Skip to main content
Log in

INAA with anticoincidence counting significantly reduces interferences from the 554.3-keV photopeak of 82Br to allow reliable measurements of nanogram levels of arsenic in solid biological materials via the 559.1-keV photopeak of 76As

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

It is rather difficult to measure low levels of arsenic by instrumental neutron activation analysis (INAA) in biological materials containing high levels of bromine and antimony in particular, as well as sodium and potassium. The 559.1-keV photopeak of 76As is interfered with by the 554.3- and 564.1-keV photopeaks of 82Br and 122Sb, respectively. The use of INAA in conjunction with anticoincidence spectrometry (INAA-AC) was found to reduce the background under the 559.1-keV photopeak by factors of 4–16 for the biological reference materials analyzed and to decrease the detection limit to 0.35 µg kg−1 making the measurement of nanogram amounts arsenic in them possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi Y, Acharya R, Chatt A (2004) J Radioanal Nucl Chem 262:277–286

    Article  CAS  Google Scholar 

  2. Menendez Sanchez W, Zwicker B, Chatt A (2009) J Radioanal Nucl Chem 282:133–138. https://doi.org/10.1007/s10967-009-0224-2

    Article  CAS  Google Scholar 

  3. Zwicker R, Zwicker BM, Laoharojanaphand S, Chatt A (2011) J Radioanal Nucl Chem 287:211–216. https://doi.org/10.1007/s10967-010-0670-x

    Article  CAS  Google Scholar 

  4. Shi Y, Chatt A (2014) J Radioanal Nucl Chem 299:867–877. https://doi.org/10.1007/s10967-013-2694-5

    Article  CAS  Google Scholar 

  5. Shi Y, Chatt A (2018) J Radioanal Nucl Chem 318:785–795. https://doi.org/10.1007/s10967-018-6164-y

    Article  CAS  Google Scholar 

  6. Shi, Y (2000), PhD Thesis, Speciation of arsenic by chemical separations and neutron activation analysis, Department of Chemistry, Dalhousie University, Halifax, NS, Canada

  7. Menendez Sanchez W (2010) PhD Thesis, Simultaneous speciation of arsenic, antimony and selenium in water by solid phase extraction and neutron activation, Department of Chemistry, Dalhousie University, Halifax, NS, Canada

  8. Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M (2017) Sci Total Environ 579:1228–1239. https://doi.org/10.1016/j.scitotenv.2016.11.108

    Article  CAS  PubMed  Google Scholar 

  9. Han T, Ji H, Li H, Cui H, Song T, Duan X, Zhu Q, Cai F, Zhang L (2017) J Ocean Univ China (Ocean Coast Sea Res) 16:455–460. https://doi.org/10.1007/s11802-017-3070-9

    Article  CAS  Google Scholar 

  10. Rabb SA, Le My D, Yu Lee L (2018) Microchem J 143:133–139. https://doi.org/10.1016/j.microc.2018.07.022

    Article  CAS  Google Scholar 

  11. Zmozinski AV, Llorente-Mirandes T, López-Sánchez JF, da Silva MM (2015) Food Chem 173:1073–1082. https://doi.org/10.1016/j.foodchem.2014.10.102

    Article  CAS  PubMed  Google Scholar 

  12. Qiua Z, Lva Z, Wanga K, Lana Y, Yanga X, Rensingc C, Fub F, Yanga G (2018) J Food Compos Anal 72:132–140. https://doi.org/10.1016/j.jfca.2018.07.002

    Article  CAS  Google Scholar 

  13. Dos Santosa QO, Silva JMM, Lemos VA, Ferreira SLC, de Andradea JB (2018) Microchem J 143:175–180. https://doi.org/10.1016/j.microc.2018.08.004

    Article  CAS  Google Scholar 

  14. Wolle MM, Conklin SD (2018) Anal Bioanal Chem 410:5675–5687. https://doi.org/10.1007/s00216-018-0906-0

    Article  CAS  PubMed  Google Scholar 

  15. Wolle MM, Conklin SD (2018) Anal Bioanal Chem 410:5689–5702. https://doi.org/10.1007/s00216-018-0910-4

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg RR, Bode P, De Nadai Fernandes EA (2011) Spectrochim Acta B 66:193–241. https://doi.org/10.1016/j.sab.2010.12.011

    Article  CAS  Google Scholar 

  17. Greenberg RR (1987) J Radioanal Nucl Chem 113:233–247

    Article  CAS  Google Scholar 

  18. Becker DA (1993) Unique quality assurance aspects of INAA for reference material homogeneity and certification. Fresenius J Anal Chem 345:298–301

    Article  CAS  Google Scholar 

  19. Lindstrom RM (2018) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6192-7

  20. Neto MJL, Nascimento EdeS, Maihara VA, Silva PSC, Landgraf M (2014) J Radioanal Nucl Chem 301:573–579. https://doi.org/10.1007/s10967-014-3167-1

    Article  CAS  Google Scholar 

  21. Acharya R, Swain KK, Shinde AD, Bhamra NS, Chakrabarty K, Karhadkar CG, Singh T, Rana YS, Pujari PK, Shukla DK, Reddy AVR (2014) J Radioanal Nucl Chem 302:1525–1530. https://doi.org/10.1007/s10967-014-3625-9

    Article  CAS  Google Scholar 

  22. Patra AC, Mohapatra S, Kumar AV, Ravi PM, Tripathi RM (2015) J Radioanal Nucl Chem 303:315–323. https://doi.org/10.1007/s10967-014-3419-0

    Article  CAS  Google Scholar 

  23. Kucera J, Cabalka M, Ferencei J, Kubesova M, Strunga V (2016) J Radioanal Nucl Chem 309:1341–1348. https://doi.org/10.1007/s10967-016-4739-z

    Article  CAS  Google Scholar 

  24. Lange CN, Figueiredo AMG, Enzweiler J, Monteiro LR (2018) J Radioanal Nucl Chem 316:819–830. https://doi.org/10.1007/s10967-018-5729-0

    Article  CAS  Google Scholar 

  25. Kato LS, Fernandes EADN, Bacchi MA, Sarries GA (2018) J Radioanal Nucl Chem 318:745–751. https://doi.org/10.1007/s10967-018-6122-8

    Article  CAS  Google Scholar 

  26. Bedregal PS, Ubillús MS, Mendoza PA (2018) J Radioanal Nucl Chem 315:309–314. https://doi.org/10.1007/s10967-017-5684-1

    Article  CAS  Google Scholar 

  27. Maroti B, Revay Z, Szentmiklosi L, Kleszcz K, Parkanyi D, Belgya T (2018) J Radioanal Nucl Chem 317:1151–1163. https://doi.org/10.1007/s10967-018-5990-2

    Article  CAS  Google Scholar 

  28. Rahman M, Islam MA, Khan RA (2018) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6222-5

  29. Kamenik J, Simoes FRP, Costa PMFJ, Kucera J, Havranek V (2018) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6200-y

  30. Ryan DE, Stuart DC, Chattopadhyay A (1978) Anal Chim Acta 100:87–93

    Article  CAS  Google Scholar 

  31. Elson CM, Milley JE, Chatt A (1983) Anal Chim Acta 142:269–275

    Article  Google Scholar 

  32. Elson CM, Ackman RG, Chatt A (1983) J Am Oil Chem Soc 60:829–832

    Article  CAS  Google Scholar 

  33. Holzbecher J, Chatt A, Ryan DE (1985) Can J Spectros 30:67–72

    CAS  Google Scholar 

  34. Chatt A, Dang HS, Fong BB, Jayawickreme CK, McDowell LS, Pegg DL (1988) J Radioanal Nucl Chem 124:65–77

    Article  CAS  Google Scholar 

  35. Chatt A, Jayawickreme CK (1989) Trans Am Nucl Soc 60:21–22

    Google Scholar 

  36. Laoharojanaphand S, Busamongkol A, Permnamtip V, Judprasong K, Chatt A (2012) J Radioanal Nucl Chem 294:323–327. https://doi.org/10.1007/s10967-012-1884-x

    Article  CAS  Google Scholar 

  37. Landsberger S, Swift G, Neuhoff J (1990) Biol Trace Elem Res 26–27:27–32

    Article  Google Scholar 

  38. Lin X, Lierse Ch, Wahl W (1997) J Radioanal Nucl Chem 215:169–178

    Article  CAS  Google Scholar 

  39. Zhang W, Chatt A (1997) Trans Am Nucl Soc 77:11–12

    Google Scholar 

  40. Zhang W (1997) PhD thesis, Studies on anticoincidence gamma-ray spectrometry in neutron activation analysis, Department of Chemistry, Dalhousie University, Halifax, NS, Canada

  41. Ryan DE, Holzbecher J, Chattopadhyay A (1987) Anal Chim Acta 200:89–100

    Article  CAS  Google Scholar 

  42. Milley JE, Chatt A (1987) J Radioanal Nucl Chem 110:345–363

    Article  CAS  Google Scholar 

  43. Jayawickreme CK, Chatt A (1987) J Radioanal Nucl Chem 110:583–593

    Article  CAS  Google Scholar 

  44. Byrne AR (1987) Fresenius J Anal Chem 326:733–735

    Article  CAS  Google Scholar 

  45. Mok WM, Wai CM (1988) Talanta 35:183–186

    Article  CAS  Google Scholar 

  46. Beazley PI, Rao RR, Chat A (1994) J Radioanal Nucl Chem 179:267–276

    Article  CAS  Google Scholar 

  47. Nyarko BJB, Akaho EHK, Fletcher JJ, Chatt A (2008) Appl Rad Isot 66:1067–1072

    Article  CAS  Google Scholar 

  48. Acharya R, Chatt A (2009) J Radioanal Nucl Chem 282:991–996

    Article  CAS  Google Scholar 

  49. Zhang W, Chatt A (2009) J Radioanal Nucl Chem 282:139–143

    Article  CAS  Google Scholar 

  50. Fukushima M, Chatt A (2012) J Radioanal Nucl Chem 294:471–478

    Article  CAS  Google Scholar 

  51. Isaac-Olive K, Chatt A (2012) J Radioanal Nucl Chem 294:479–486

    Article  CAS  Google Scholar 

  52. Fukushima M, Chatt A (2013) J Radioanal Nucl Chem 296:563–571

    CAS  Google Scholar 

  53. Zhang W, Chatt A (2013) J Radioanal Nucl Chem 296:495–501. https://doi.org/10.1007/s10967-012-2064-8

    Article  CAS  Google Scholar 

  54. Zhang W, Chatt A (2014) J Radioanal Nucl Chem 299:1777–1785. https://doi.org/10.1007/s10967-013-2854-7

    Article  CAS  Google Scholar 

  55. Zhang W, Chatt A (2014) J Radioanal Nucl Chem 302:1201–1211. https://doi.org/10.1007/s10967-014-3540-0

    Article  CAS  Google Scholar 

  56. Isaac-Olive K, Chatt A (2014) J Radioanal Nucl Chem 302:1213–1224. https://doi.org/10.1007/s10967-014-3520-4

    Article  CAS  Google Scholar 

  57. Isaac-Olive K, Kyaw TT, Chatt A (2018) J Radioanal Nucl Chem 318:247–257. https://doi.org/10.1007/s10967-018-6086-8

    Article  CAS  Google Scholar 

  58. Serfor-Armah Y, Carboo D, Akuamoah RK, Chatt A (2018) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6194-5

  59. Drescher A, Yoho M, Landsberger S (2018) J Radioanal Nucl Chem 318:527–532. https://doi.org/10.1007/s10967-018-6033-8

    Article  CAS  Google Scholar 

  60. Ehmann WD, McKown DM (1969) Anal Lett 2:49–60

    Article  CAS  Google Scholar 

  61. Tomlin BE, Zeisler R, Lindstrom RM (2008) Nucl Instrum Meth Phys Res A 589:243–249

    Article  CAS  Google Scholar 

  62. Di Piero A, Bacchi MA, Fernandes EAN (2008) J Radioanal Nucl Chem 278:761–765. https://doi.org/10.1007/s10967-008-1607-5

    Article  CAS  Google Scholar 

  63. Zeisler R, Cho H, Ribeiro IS, Shetty MG, Turkoglu D (2017) J Radioanal Nucl Chem 314:513–519. https://doi.org/10.1007/s10967-017-5342-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W, Chatt A (2018) J Radioanal Nucl Chem 318:445–455. https://doi.org/10.1007/s10967-018-6031-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of Dr. J. Holzbecher and Blaine Zwicker of the DUSR facility for irradiations. The financial assistance from the Natural Sciences and Engineering Research Council (NSERC) Canada in the form of Discovery and Infrastructure Grants (AC) and the Dalhousie University Faculty of Graduate Studies for a scholarship (WZ) are also acknowledged. This paper was presented at RadChem 2018 held during 2018 May 13–18 in Mariánské Lázně, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chatt, A. INAA with anticoincidence counting significantly reduces interferences from the 554.3-keV photopeak of 82Br to allow reliable measurements of nanogram levels of arsenic in solid biological materials via the 559.1-keV photopeak of 76As. J Radioanal Nucl Chem 318, 1671–1680 (2018). https://doi.org/10.1007/s10967-018-6280-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6280-8

Keywords

Navigation