Advertisement

Heating factors of gas targets for radioactive ion beam production

  • N. N. Duy
  • K. Y. Chae
  • Vinh N. T. Pham
  • T. V. Nhan Hao
Article
  • 26 Downloads

Abstract

At low-energy nuclear physics facilities, the in-flight fragmentation method is often employed to produce radioactive ion beams. This technique often involves a stable ion beam at high intensity and a gas cell target. Since the parameters for the production reaction are usually chosen to take advantage of a large cross section of the resonance reaction, a slight change in the center-of-mass energy due to the reduced target density may significantly affect the rare isotope production rate. Therefore, to estimate the heating effect due to beam particles on the target thickness, a new and more comprehensive semi-empirical model is developed by employing a heating factor function. The estimated heating factors were consistent with experimental data, which were obtained from various reaction measurements at wide ranges of heat densities.

Keywords

Heating factor Radioactive ion beam production In-flight method Intense beam Target density reduction Gas target 

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (Nos. NRF2017R1D1A1B03030019, NRF2018M7A1A1072274, and NRF2016R1A5A1013277). This work was also supported by LG Yonam Foundation (of Korea).

References

  1. 1.
    Thoennessen M (2010) Nucl Phys A 834:688cCrossRefGoogle Scholar
  2. 2.
    Gade A, Sherrill BM (2016) Phys Scr 91:053003CrossRefGoogle Scholar
  3. 3.
    Sakurai H (2008) Nucl Phys A 805:526cCrossRefGoogle Scholar
  4. 4.
    Tshoo K, Kim YK, Kwon YK, Woo HJ, Kim GD, Kim YJ, Kang BH, Park SJ, Park YH, Yoon JW, Kim JC, Lee JH, Seo CS, Hwang W, Yun CC, Jeon D, Kim SK (2013) Nucl Instrum Methods Phys Res B 317:242CrossRefGoogle Scholar
  5. 5.
    Kang BH, Kim GD, Woo HJ, Tshoo KH, Hwang WJ, Jang DY, Jeong SC, Kim YK (2013) J Korean Phys Soc 63:1473CrossRefGoogle Scholar
  6. 6.
    Kwon YK, Kim YK, Komatsubara T, Moon JY, Park JS, Shin TS, Kim YJ (2014) AIP Conf Proc 1594:190CrossRefGoogle Scholar
  7. 7.
    Tshoo K, Chae H, Park J, Moon JY, Kwon YK, Souliotis GA, Hashimoto T, Akers C, Berg GPA, Choi S, Jeong SC, Kato S, Kim YK, Kubono S, Lee KB, Moon CB (2016) Nucl Instrum Methods Phys Res B 376:188CrossRefGoogle Scholar
  8. 8.
    Kwon YK (2016) RISP Report No. 20/7/2016 (unpublished)Google Scholar
  9. 9.
    Kubono S, Yanagisawa Y, Teranishi T, Kato S, Kishida Y, Michimasa S, Ohshiro Y, Shimoura S, Ue K, Watanabe S, Yamazaki N (2002) Eur Phys J A 13:217Google Scholar
  10. 10.
    Yanagisawa Y, Kubono S, Teranishi T, Ue K, Michimasa S, Notani M, He JJ, Ohshiro Y, Shimoura S, Watanabe S, Yamazaki N, Iwasaki H, Kato S, Kishida T, Morikawa T, Mizoi Y (2005) Nucl Instrum Methods Phys Res A 539:74CrossRefGoogle Scholar
  11. 11.
    Duy NN, Chae KY, Cha SM, Yamaguchi H, Abe K, Bae SH, Binh DN, Choi SH, Hahn KI, Hayakawa S, Hong B, Iwasa N, Kahl D, Khiem LH, Kim A, Kim DH, Kim EJ, Kim GW, Kim MJ, Kwak K, Kwag MS, Lee EJ, Lim SI, Moon B, Moon JY, Park SY, Phong VH, Shimizu H, Yang L, Ge Z, Nhan Hao TV (2018) Nucl Instrum Methods Phys Res A 897:8CrossRefGoogle Scholar
  12. 12.
    Scharrer P, Düllmann CE, Barth W, Khuyagbaatar J, Yakushev A, Bevcic M, Gerhard P, Groening L, Horn KP, Jäger E, Krier J, Vormann H (2017) Phys Rev Accel Beams 20:043503CrossRefGoogle Scholar
  13. 13.
    Imao H, Okuno H, Kuboki H, Yokouchi S, Fukunishi N, Kamigaito O, Hasebe H, Watanabe T, Watanabe Y, Kase M, Yano Y (2012) Phys Rev ST Accel Beams 15:1223501CrossRefGoogle Scholar
  14. 14.
    Olson CL, Hinshelwood DD, Hubbard RF, Lampe M, Neri JM, Ottinger PF, Poukey JW, Rose DV, Slinker SP, Stephanakis SJ, Welch DR, Young FC (1993) Il Nuovo Cimento A 106:1705CrossRefGoogle Scholar
  15. 15.
    Gorres J, Kettner KU, Krawinkel H, Rolfs C (1980) Nucl Instrum Methods Phys Res 177:295CrossRefGoogle Scholar
  16. 16.
    Marta M, Confortola F, Bemmerer D, Boiano C, Bonetti R, Broggini C, Casanova M, Corvisiero P, Costantini H, Elekes Z, Formicola A, Fulop Z, Gervinog G, Guglielmetti A, Gustavino C, Gyurky G, Imbriani G, Junker M, Lemut A, Limata B, Menegazzo R, Prati P, Roca V, Rolfs C, Romano M, Rossi AC, Somorjai E, Strieder F, Terrasi F, Trautvetter HP (2006) Nucl Instrum Methods Phys Res A 569:727CrossRefGoogle Scholar
  17. 17.
    Yamaguchi H, Wakabayashi Y, Amadio G, Hayakawa S, Fujikawa H, Kubono S, He JJ, Kim ADN, Binh DN (2008) Nucl Instrum Methods Phys Res A 589:150CrossRefGoogle Scholar
  18. 18.
    Trautvetter HP, Elix K, Rolfs C, Brand K (1979) Nucl Instrum Methods Phys Res 161:173CrossRefGoogle Scholar
  19. 19.
    Bazin D, Tarasov OB, Lewitowicz M, Sorlin D (2002) Nucl Instrum Methods Phys Res A 482:307CrossRefGoogle Scholar
  20. 20.
    Tarasov OB, Bazin D (2008) Nucl Instrum Methods Phys Res B 266:4657CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PhysicsSungkyunkwan UniversitySuwonSouth Korea
  2. 2.Department of PhysicsHo Chi Minh City University of EducationHo Chi Minh CityVietnam
  3. 3.Center for Research and DevelopmentDuy Tan UniversityDanangVietnam
  4. 4.Center for Theoretical and Computational PhysicsUniversity of Education, Hue UniversityHue CityVietnam

Personalised recommendations