Skip to main content

Activation analysis in Czechoslovakia and in the Czech Republic: more than 50 years of activities

Abstract

Neutron activation analysis has been continuously pursued in the former Czechoslovakia and in the Czech Republic since 1962, after an experimental nuclear reactor VVR-S became available. Activities in photon activation analysis started after the installation of a microtron, a source of high energy photons, in 1980. Methodological developments of both methods are described, as well as their applications in various fields of science and technology, namely in environmental research and occupational health studies, cosmo- and geochemical research, biomedical studies, agricultural, nutritional, material research, archaeological and cultural heritage studies, and in quality control and preparation of reference materials.

This is a preview of subscription content, access via your institution.

Fig. 1

(with Springer Nature permission)

Fig. 2

(with Springer Nature permission)

Fig. 3

(adapted from [55] with Springer Nature permission)

References

  1. Kysela J (2005) In: Kuča L, Zběhlík J (eds) 50 years of Nuclear Research Institute at Řež 1955–2005. Nuclear Research Institute, Řež, pp 207–214 (in Czech). ISBN 80-239-4904-7

    Google Scholar 

  2. Vognar M, Šimáně Č, Chvátil D (2003) Twenty years of microtron laboratory activities at CTU in Prague. Acta Polytech 43:50–58

    Google Scholar 

  3. Krist P, Horák Z, Mizera J, Chvátil D, Vognar M, Řanda Z (2015) Innovations at the MT 25 microtron aimed at applications in photon activation analysis. J Radioanal Nucl Chem 304:183–188

    CAS  Google Scholar 

  4. Kotas P (1978) On fifteen years of activation analysis in Czechoslovakia. Radiochem Radioanal Lett 32:209–218

    Google Scholar 

  5. Vobecký M (1994) History of development and applications of nuclear analytical methods in the Czech Republic. Biol Trace Elem Res 43–45:1–6

    PubMed  Google Scholar 

  6. Kukula F, Slunečko J, Šimková M (1962) Copper determination in aluminium. Report ÚJV 672, Nuclear Physics Institute of the Czech Academy of Sciences, Řež (in Czech)

  7. Šimková M (1963) Activation analysis of tantalum in iron alloys and in niobium. Hutnické listy 18(5):357–358 (in Czech)

    Google Scholar 

  8. Šimková M, Kukula F, Slunečko J (1964) Iodine determination in organic polymers by activation analysis. Chem Zvesti 19:115–119 (in Czech)

    Google Scholar 

  9. Vobecký M, Knotek O (1964) Activation determination of gold in quartz. Chem Listy 58:15–17 (in Czech)

    Google Scholar 

  10. Rakovič M, Talpová H (1964) Use of nondestructive activation analysis for the determination of sodium in biological material. Čas Lék Čes 103:632–635 (in Czech)

    Google Scholar 

  11. Rakovič M, Talpová H (1969) Arsenic determination in biological material with neutron activation analysis. Čas Lék Čes 108:1102–1104 (in Czech)

    Google Scholar 

  12. Rakovič M (1970) Activation analysis. Academia, Prague

    Google Scholar 

  13. Babický A, Taylor DM (1966) Determination of Zn in human teeth by activation analysis. Čs Stomat 66:167–170 (in Czech)

    Google Scholar 

  14. Pařízek J, Boursnell JC, Hay MF, Babický A, Taylor DM (1966) Zinc in the maturing rat testis. J Reprod Fertil 12:501–507

    PubMed  Google Scholar 

  15. Růžička J, Starý J (1963) A new principle of activation analysis separations—I: theory of substoichiometric determinations. Talanta 10:287–293

    Google Scholar 

  16. Zeman A, Růžička J, Starý J (1963) A new principle of activation analysis separations—II: substoichiometric determination of traces of zinc and copper in germanium dioxide. Talanta 10:685–689

    CAS  Google Scholar 

  17. Růžička J, Starý J, Zeman A (1963) A new principle of activation analysis separations—IV: substoichiometric determination of traces of silver. Talanta 10:905–909

    Google Scholar 

  18. Růžička J, Starý J (1968) Substoichiometry in radiochemical analysis. Pergamon Press, Oxford

    Google Scholar 

  19. Křivánek M, Kukula F, Slunečko J (1965) Substoichiometric determination of copper in high-purity metals by activation analysis. Talanta 12:721–726

    Google Scholar 

  20. Kukula F, Mudrová B, Křivánek M (1967) Use of thenoyltrifluoroacetone for the determination of manganese by activation analysis. Talanta 14:233–237

    CAS  PubMed  Google Scholar 

  21. Kukula F, Šimková M (1970) Application of the group substoichiometric separation of gold, mercuric, and cupric diethyldithiocarbamates to determining them by means of activation analysis. J Radioanal Chem 4:271–279

    CAS  Google Scholar 

  22. Obrusník I, Adámek A (1968) Replacement substoichiometry and its application in activation analysis. Talanta 15:433–440

    Google Scholar 

  23. Obrusník I (1969) Determination of indium and tin by activation analysis using replacement substoichiometry. Talanta 16:563–566

    PubMed  Google Scholar 

  24. Racek J (2005) In: Kuča L, Zběhlík J (eds) 50 years of Nuclear Research Institute at Řež 1955–2005. Nuclear Research Institute, Řež, pp 227–229 (in Czech). ISBN 80-239-4904-7

    Google Scholar 

  25. Vobecký M, Petrů F (1968) Beiträge zur Chemie der selteneren Elemente LIV. Nichtdestruktive Aktivierungsanalyse des Braunerschen Didyms. Collect Czech Chem Commun 33:3903–3906

    Google Scholar 

  26. Řanda Z, Vobecký M, Kuncíř J, Benada J (1978) Multielement standards in routine neutron activation analysis. J Radioanal Chem 46:95–107

    Google Scholar 

  27. Řanda Z (1976) Analytical possibilities of epithermal neutron activation in routine INAA of mineral materials. Radiochem Radioanal Lett 24:157–168

    Google Scholar 

  28. Kučera J (1979) Epithermal neutron activation analysis of trace elements in biological materials. Radiochem Radioanal Lett 38:229–246

    Google Scholar 

  29. Obrusník I, Bode P (1992) Improved ease of operation in epithermal NAA by irradiation in plastic capsules and use of well-type Ge-spectrometry. A feasibility study. J Radioanal Nucl Chem 158:343–352

    Google Scholar 

  30. Bartošek J, Adams F, Hoste J (1972) A dead-time correction system for gamma-ray spectrometry of short-lived isotopes. Nucl Instrum Methods 103:45–47

    Google Scholar 

  31. Bartošek J, Mašek J, Adams F, Hoste J (1972) The use of a pileup rejector in quantitative pulse spectrometry. Nucl Instrum Methods 104:221–223

    Google Scholar 

  32. Kosina Z (1970) A peak finding method for use in Ge(Li) spectra processing. Nucl Instrum Methods 88:163–164

    CAS  Google Scholar 

  33. Kajfosz J, Kosina Z (1973) A peak location method with statistically defined sensitivity. Nucl Instrum Methods 107:613–614

    Google Scholar 

  34. Hnatowicz V (1976) Identification of weak lines in gamma-ray spectra. Nucl Instrum Methods 133:137–141

    Google Scholar 

  35. Hnatowicz V (1977) Dependence of efficiency curve for Ge(Li) detectors on detector shape. Nucl Instrum Methods 142:403–407

    CAS  Google Scholar 

  36. Kokta L (1973) Determination of peak area. Nucl Instrum Methods 112:245–251

    CAS  Google Scholar 

  37. Obrusník I, Kučera J (1978) Digital methods of peak area computation and detection limit in gamma-spectrometry. Radiochem Radioanal Lett 32:149–160

    Google Scholar 

  38. Frána J (2003) Program DEIMOS32 for gamma-ray spectra evaluation. J Radioanal Nucl Chem 257:583–587

    Google Scholar 

  39. De Corte F, De Wispelaere A, van Sluijs R, Bossus D, Simonits A, Kučera J, Frána J, Smodiš B, Jaćimović R (1997) The installation of Kayzero-assisted NAA for use in industry and environmental sanitation in three Central European countries: plans and achievements of a Copernicus project. J Radioanal Nucl Chem 215:31–37

    Google Scholar 

  40. De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frána J, Horák Z, Jaćimović R (2001) Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project. Appl Radiat Isot 55:347–354

    PubMed  Google Scholar 

  41. De Corte F, van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispeleare A, Bossus D, Frána J, Horák Z, Jaćimovič R (2001) The validation of Kayzero-assisted NAA in Budapest, Řež, and Ljubljana via the analysis of three BCR certified reference materials. Fresenius J Anal Chem 370:38–41

    PubMed  Google Scholar 

  42. Aarnio PA, Nikkinen MT, Routti JT (1992) Sampo-90 high resolution interactive gamma-spectrum analysis including automation with macros. J Radioanal Nucl Chem 160:289–296

    CAS  Google Scholar 

  43. Fazekas B, Molnár G, Belgya T, Dabolczi L, Simonits A (1997) Introducing Hypermet-PC for automatic analysis of complex gamma-ray spectra. J Radioanal Nucl Chem 215:271–277

    CAS  Google Scholar 

  44. Obrusník I, Eckschlager K (1987) Optimization of information properties of NAA with respect to information content and profitability of results. J Radioanal Nucl Chem 112:233–242

    Google Scholar 

  45. Kučera J, Zeisler R (2004) Do we need radiochemical separation in activation analysis? J Radioanal Nucl Chem 262:255–260

    Google Scholar 

  46. Řanda Z, Benada J, Kunciř J, Vobecký M, Frána J (1972) Radioanalytical methods for the non-destructive analysis of lunar samples. J Radioanal Chem 11:305–337

    Google Scholar 

  47. Baldová D, Škoda R, Kučera J, Viererbl L, Uhlíř J (2011) Feasibility study of 233Pa and 233U determination in neutron irradiated thorium for future applications in thorium–uranium nuclear fuel cycle. J Radioanal Nucl Chem 288:37–42

    Google Scholar 

  48. Majer J, Vobecký M (1973) Study of analytical possibilities of uranium determination using delayed neutrons induced by 14 MeV fast neutrons. Radioisotopy 14:681–692 (in Czech)

    Google Scholar 

  49. Vandlík T, Kliment V, Sčasnár V (1973) Determination of some elements in oil additives by 14 MeV neutron activation analysis. Radioisotopy 14:537–545 (in Slovak)

    Google Scholar 

  50. Kliment V, Tolgyessy J (1970) On the feasibility of the determination of cobalt and selenium by on-stream activation analysis. Radiochem Radioanal Lett 5:259–263

    CAS  Google Scholar 

  51. Kliment V, Tölgyessy J (1971) Beitrag zur kontinuierlichen Aktivierungsanalyse strömender Lösungen. I. Theorie der kontinuierlichen Aktivierungsanalyse. Isotopenpraxis 7:446–448

    CAS  Google Scholar 

  52. Kliment V, Tölgyessy J (1972) Beitrag zur kontinuierliehen Neutronen-Aktivierungsanalyse strömender Lösungen. IV. Bestimmung von Silber und Vanadium. Isotopenpraxis 8:211–214

    CAS  Google Scholar 

  53. Kučera J (1976) Solvent extraction group separation scheme for neutron activation analysis of trace elements in biological materials. Radiochem Radioanal Lett 24:215–226

    Google Scholar 

  54. Kučera J, de Goeij JJM (1981) A comparison of two separation techniques using NaI(Tl) and Ge(Li) spectrometry for trace element determination in biological materials by neutron activation analysis. J Radioanal Chem 63:23–40

    Google Scholar 

  55. Kučera J (2007) Methodological developments and applications of neutron activation analysis. J Radiaoanal Nucl Chem 273:273–280

    Google Scholar 

  56. Kučera J, Zeisler R (2005) Low-level determination of silicon in biological materials using radiochemical neutron activation analysis. J Radioanal Nucl Chem 263:811–816

    Google Scholar 

  57. Byrne AR, Kučera J (1991) Radiochemical neutron activation analysis of traces of vanadium in biological samples: a comparison of prior dry ashing with post-irradiation wet ashing. Fresenius J Anal Chem 340:48–52

    CAS  Google Scholar 

  58. Kučera J, Bencko V, Tejral J, Borská L, Soukal L, Řanda Z (2004) Biomonitoring of occupational exposure: neutron activation determination of selected metals in the body tissues and fluids of workers manufacturing stainless steel vessels. J Radioanal Nucl Chem 259:7–11

    Google Scholar 

  59. Kučera J, Soukal L, Faltejsek J (1986) Low level determination of manganese in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem 107:361–369

    Google Scholar 

  60. Mizera J, Řanda Z, Kučera J (2008) Determination of silver in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem 278:599–602

    CAS  Google Scholar 

  61. Kučera J, Řanda Z, Soukal L (2001) A comparison of three activation analysis methods for iodine determination in foodstuffs. J Radioanal Nucl Chem 249:61–65

    Google Scholar 

  62. Kučera J, Iyengar GV, Řanda Z, Parr RM (2004) Determination of iodine in Asian diet samples by epithermal and radiochemical neutron activation analysis. J Radioanal Nucl Chem 259:505–509

    Google Scholar 

  63. Krausová I, Kučera J, Světlík I (2013) Determination of 129I in biomonitors collected in the vicinity of a nuclear power plant by neutron activation analysis. J Radioanal Nucl Chem 295:2043–2048

    Google Scholar 

  64. Kučera J, Byrne AR, Mizera J, Lučaníková M, Řanda Z (2006) Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level. J Radioanal Nucl Chem 269:251–257

    Google Scholar 

  65. Mizera J, Kučera J, Řanda Z, Lučaníková M (2006) Advanced liquid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis. Czech J Phys 56(Suppl D):D315–D321

    CAS  Google Scholar 

  66. Kučera J, Drobník J (1982) Determination of platinum in urine and serum after the administration of cisplatin by neutron activation analysis. J Radioanal Chem 75:71–80

    Google Scholar 

  67. Kučera J, Vobecký M, Soukal L, Zákoucký D, Vénos D (1997) Low level determination of thallium in biological and environmental reference materials by RNAA using several counting methods. J Radioanal Nucl Chem 217:131–137

    Google Scholar 

  68. Kučera J, Kameník J, Povinec PP (2017) Radiochemical separation of mostly short-lived neutron activation products. J Radioanal Nucl Chem 311:1299–1307

    Google Scholar 

  69. Kučera J, Kameník J, Povinec PP (2017) Determination of ultra-trace levels of Th and U in components of SuperNEMO detector by radiochemical neutron activation analysis. In: Proceedings of 6th Asia-Pacific symposium on radiochemistry (APSORC-2017), Jeju Island, Korea, 17–22 Sept 2017

  70. Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite “Morávka“by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283

    Google Scholar 

  71. Mizera J, Řanda Z, Košták M (2010) Neutron activation analysis in geochemical characterization of Jurassic-Cretaceous sedimentary rocks from the Nordvik Penninsula. J Radioanal Nucl Chem 284:211–219

    CAS  Google Scholar 

  72. Kučera J, Soukal L (1993) Determination of As, Cd, Cu, Hg, Mo, Sb, and Se in biological reference materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 168:185–199

    Google Scholar 

  73. Kučera J, Byrne AR (1993) Nickel determination in biological materials at ultratrace level by fast neutron radiochemical activation analysis. J Radioanal Nucl Chem 168:201–213

    Google Scholar 

  74. Alamin MB, Bejey AM, Kučera J, Mizera J (2006) Determination of mercury and selenium in consumed food items in Libya using instrumental and radiochemical NAA. J Radioanal Nucl Chem 270:143–146

    CAS  Google Scholar 

  75. Kučera J, Mizera J, Repinc U, Smodiš B (2006) Simultaneous low-level determination determination of iodine and manganese by radiochemical neutron activation analysis. Czech J Phys 56(Suppl D):D151–D157

    Google Scholar 

  76. Kučera J, Krausová I (2007) Fast decomposition of biological and other materials for radiochemical activation analysis: a radiochemical study of element recoveries following alkaline-oxidative fusion. J Radioanal Nucl Chem 271:577–580

    Google Scholar 

  77. Kučera J, Bode P, Štěpánek V (2000) The 1993 ISO Guide to the expression of uncertainty in measurement applied to NAA. J Radioanal Nucl Chem 245:115–122

    Google Scholar 

  78. Lučaníková M, Kučera J, Šebesta F, John J (2006) Use of new composite materials for the determination of Cu, Cd, Mo, As and Sb in biological samples by radiochemical neutron activation analysis. J Radioanal Nucl Chem 269:463–468

    Google Scholar 

  79. Kučera J, Frána J, Horák Z, Marek M, Tomášek F, Viereibl L (1999) Calibration of the reactor neutron spectrum for the k 0-NAA standardization using several approaches. Czech J Phys 49(S1):295–301

    Google Scholar 

  80. Vermaercke P, Robouch P, Eguskiza M, De Corte F, Kennedy G, Smodiš B, Jaćimović R, Yonezawa C, Matsue H, Lin X, Blaauw M, Kučera J (2006) Characterisation of synthetic multi-element standards (SMELS) used for the validation of k 0-NAA. Nucl Instrum Methods A 564:675–682

    CAS  Google Scholar 

  81. Kubešová M, Kučera J (2010) Validation of k 0 standardization method in neutron activation analysis—the use of Kayzero for Windows programme at the Nuclear Physics Institute, Řež. Nucl Instrum Methods A 622:403–406

    Google Scholar 

  82. Kubešová M, Kučera J (2011) Comparison of Kayzero forWindows and k0-IAEA software packages for k 0 standardization in neutron activation analysis. Nucl Instrum Methods A 654:206–212

    Google Scholar 

  83. Kubešová M, Kučera J, Fikrle M (2012) Inconsistencies of neutron flux parameters for k 0 standardization in neutron activation analysis determined with the use of Au + Zr and Au + Mo + Cr monitor sets at the LVR-15 reactor in Řež. J Radioanal Nucl Chem 293:665–674

    Google Scholar 

  84. Kubešová M, Kučera J, Fikrle M (2011) A new monitor set for the determination of neutron flux parameters in short-time k 0-NAA. Nucl Instrum Methods A 656:61–64

    Google Scholar 

  85. Kubešová M, Krausová I, Kučera J (2014) Verification of k 0-NAA results at the LVR-15 reactor in Řež with the use of Au + Mo + Rb(+Zn) monitor set. J Radioanal Nucl Chem 300:473–480

    Google Scholar 

  86. Kubešová M, Kučera J (2012) How to calculate uncertainties of neutron flux parameters and uncertainties of analysis results in k 0-NAA? J Radioanal Nucl Chem 293:87–94

    Google Scholar 

  87. Kučera J, Kubešová M, Lebeda O (2018) Improvement of the Ca determination accuracy with k 0-INAA using an HPGe coaxial detector with extended energy range efficiency calibration. J Radioanal Nucl Chem 315:671–675

    Google Scholar 

  88. Řanda Z, Špaček B, Kuncíř J, Benada J (1981) Nondestructive gamma activation analysis of mineral materials. Czechoslovak Atomic Energy Commission, Nuclear Information Centre, Prague

    Google Scholar 

  89. Řanda Z, Kreisinger F (1983) Tables of nuclear constants for gamma activation analysis. J Radioanal Chem 77:279–495

    Google Scholar 

  90. Řanda Z, Špaček B, Mizera J (2007) Fast determination of gold in large samples of gold ores by photoexcitation reactions using 10 MeV bremsstrahlung. J Radioanal Nucl Chem 271:603–606

    Google Scholar 

  91. Řanda Z, Kučera J, Mizera J, Frána J (2007) Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J Radioanal Nucl Chem 271:589–596

    Google Scholar 

  92. Krausová I, Mizera J, Řanda Z, Chvátil D, Krist P (2015) Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron. Nucl Instrum Methods B 342:82–86

    Google Scholar 

  93. Krausová I, Mizera J, Dostálek P, Řanda Z (2018) Non-destructive determination of nitrogen in malting barleys by instrumental photon activation analysis and its comparison with the Dumas method. J Inst Brew 124:4–8

    Google Scholar 

  94. Mádlíková M, Krausová I, Mizera J, Táborský J, Faměra O, Chvátil D (2018) Nitrogen assay in winter wheat by short-time instrumental photon activation analysis and its comparison with the Kjeldahl method. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-5881-6

    Article  Google Scholar 

  95. Havránek V, Kučera J, Řanda Z, Voseček V (2004) Comparison of fluorine determination in biological and environmental samples by NAA, PAA and PIGE. J Radioanal Nucl Chem 259:325–329

    Google Scholar 

  96. Řanda Z, Kučera J, Soukal L (2001) Possibilities of simultaneous determination of lead and thallium in environmental and biological samples by microtron activation analysis with radiochemical separation. J Radioanal Nucl Chem 248:149–154

    Google Scholar 

  97. Krausová I (2015) Short-lived products of photonuclear reactions using microtron and their utilization in photon activation analysis. PhD thesis, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering (in Czech)

  98. Obrusník I, Stárková B, Blažek J (1976) Instrumental neutron activation analysis of fly ashes and emissions. J Radioanal Chem 31:495–502

    Google Scholar 

  99. Obrusník I, Stárková B, Blažek J, Bencko V (1979) Instrumental neutron activation analysis of fly ash, aerosols and hair. J Radioanal Chem 54:311–324

    Google Scholar 

  100. Chatt A, Katz SA (1988) Hair analysis: applications in the biomedical and environmental sciences. VCH Publishers, New York

    Google Scholar 

  101. Obrusník I (1986) Activation analysis of human hair as a tool for environmental pollution monitoring. J Hyg Epidemiol Microbiol Immunol 30:11–25

    PubMed  Google Scholar 

  102. Bencko V (2005) In: Tobin DJ (ed) Hair in toxicology: an important biomonitor. The Royal Society of Chemistry, Cambridge, pp 89–103

    Google Scholar 

  103. Obrusník I, Bencko V (1979) INAA study on trace elements in hair of 3 selected population groups in Czechoslovakia. Radiochem Radioanal Lett 38:189–195

    Google Scholar 

  104. Obrusník I, Skřivánek O, Umlaufová M, Hovorka V (1985) Neutron activation analysis of neonate and maternal hair samples in areas with different levels of pollution. J Radioanal Nucl Chem 89:561–570

    Google Scholar 

  105. Rakovič M, Latýnová E, Foltýnová V, Výborný S, Kučera J, Pilecká N, Glagoličová A (1996) Feasibility of using INAA for biomonitoring of heavy metals and other elements in human ectoderm derivatives. J Radioanal Nucl Chem 212:281–286

    Google Scholar 

  106. Obrusník I, Paukert J (1984) Indication of environmental pollution by means of INAA of the hair of some free living mammals. J Radioanal Nucl Chem 83:397–406

    Google Scholar 

  107. Mohamed NK, Ntarisa AVR, Makundi IN, Kučera J (2016) Impact of North Mara gold mine on the element contents in fish from the river Mara, Tanzania. J Radioanal Nucl Chem 309:421–427

    CAS  Google Scholar 

  108. Esen AN, Kubešová M, Haciyakupoglu S, Kučera J (2016) Instrumental neutron activation analysis of plant tissues and soils for biomonitoring in urban areas in Istanbul. J Radioanal Nucl Chem 309:373–382

    CAS  Google Scholar 

  109. Bitewlign TA, Chaubey AK, Beyene GA, Melikegnaw TH, Mizera J, Kameník J, Krausová I, Kučera J (2017) Instrumental neutron activation analysis of environmental samples from a region with prevalence of population disabilities in the North Gondar, Ethiopia. J Radioanal Nucl Chem 311:2047–2059

    CAS  Google Scholar 

  110. Spěváčková V, Kučera J (1989) Trace element speciation in contaminated soils studied by atomic absorption spectrometry and neutron activation analysis. Intern J Environ Anal Chem 35:241–251

    Google Scholar 

  111. Schwarz J, Smolík J, Veselý V, Sýkorová I, Kučera J (1996) Particulate emissions from the fluidized bed combustion of brown coal. J Aerosol Sci 27(Suppl 1):S359–S360

    Google Scholar 

  112. Smolík J, Schwarz J, Veselý V, Sýkorová I, Kučera J, Havránek V (1999) Characterization of solid emissions from atmospheric fluidized-bed combustion of two Czech Lignites. Environ Sci Technol 33:3543–3551

    Google Scholar 

  113. Kučera J, Havránek V, Smolík J, Schwarz J, Veselý V, Kugler J, Sýkorová I, Šantroch J (1999) INAA and PIXE of atmospheric and combustion aerosols. Biol Trace Elem Res 71–72:233–245

    PubMed  Google Scholar 

  114. Havránek V, Kučera J, Horáková J, Voseček V, Smolík J, Schwarz J, Sýkorová I (1999) Matrix effects in PIXE analysis of aerosols and ashes. Biol Trace Elem Res 71–72:431–442

    PubMed  Google Scholar 

  115. Sysalová J, Kučera J, Fikrle M, Drtinová B (2013) Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis. Microchem J 110:691–694

    Google Scholar 

  116. Sysalová J, Kučera J, Drtinová B, Červenka R, Zvěřina O, Komárek J, Kameník J (2017) Mercury species in formerly contaminated soils and released soil gases. Sci Total Environ 584–585:1032–1039

    PubMed  Google Scholar 

  117. Kučera J, Mizera J, Řanda Z, Vávrová M (2007) Pollution of agricultural crops with lantanides, thorium and uranium studied by instrumental and radiochemical neutron activation analysis. J Radioanal Nucl Chem 271:581–587

    Google Scholar 

  118. Hou XL, Dahlgaard H, Nielsen SP, Kučera J (2002) Level and origin of iodine-129 in the Baltic Sea. J Environ Radioact 61:331–343

    CAS  PubMed  Google Scholar 

  119. Hou X, Malenchenko AF, Kučera J, Dahlgaard H, Nielsen SP (2003) Iodine-129 in thyroid and urine in Ukraine and Denmark. Sci Total Environ 302:63–73

    CAS  PubMed  Google Scholar 

  120. Hou XL, Fogh CL, Kučera J, Andersson KG, Dahlgaard H, Nielsen SP (2003) Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci Total Environ 308:97–109

    CAS  PubMed  Google Scholar 

  121. Kučera J, Senft V, Hůzl F, Soukal L (1988) Cadmium and zinc determination by neutron activation analysis and biochemical tests in tissues of workers professionally exposed to cadmium. J Radioanal Nucl Chem 122:361–372

    Google Scholar 

  122. Kučera J, Bencko V, Pápayová A, Šaligová D, Tejral J, Borská L (2001) Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders. Cent Eur J Public Health 9:171–175

    PubMed  Google Scholar 

  123. Kučera J, Lener J, Soukal L, Horáková J (1996) Air pollution and biological monitoring of environmental exposure to vanadium using short-time neutron activation analysis. J Trace Microprobe Techn 14:191–201

    Google Scholar 

  124. Kučera J, Byrne AR, Mravcová A, Lener J (1992) Vanadium levels in hair and blood of normal and exposed persons. Sci Total Environ 15:191–205

    Google Scholar 

  125. Kučera J, Lener J, Mňuková J, Bayerová E (1998) In: Nriagu JO (ed) Vanadium in the environment, part 2: health effects. Wiley, New York, pp 55–73

    Google Scholar 

  126. Sabbioni E, Kučera J, Pietra R, Vesterberg O (1996) A critical review on normal concentrations of vanadium in human blood, serum, and urine. Sci Total Environ 188:49–58

    CAS  PubMed  Google Scholar 

  127. Vobecký M, Frána J, Bauer J, Řanda Z, Benada J, Kuncíř J (1971) In: Proceedings of second lunar sci conference, vol 2, Houston, MIT Press. Geochim Cosmochim Acta 35(Suppl 2):1291–1300

  128. Vobecký M, Frána J, Řanda Z, Benada J, Kuncíř J (1971) Analytical possibilities of reactor neutron activation method in non-destructive analysis of meteorites. Radiochem Radioanal Lett 6:237–247

    Google Scholar 

  129. Kaizer J, Kučera J, Kameník J, Porubčan V, Povinec PP (2017) Determination of elemental composition of the Rumanová, Uhrovec, Vel’ké Borové, Košice and Chelyabinsk chondrites by instrumental neutron activation analysis. J Radioanal Nucl Chem 311:2085–2096

    CAS  Google Scholar 

  130. Bischoff A, Jersek M, Grau T, Mirtic B, Ott U, Kučera J, Horstmann M, Lauberstein M, Herrmann S, Řanda Z, Weber M, Heusser G (2011) Jesenice—a new meteorite fall from Slovenia. Meteorit Planet Sci 46:793–804

    CAS  Google Scholar 

  131. Bouška V, Benada J, Řanda Z, Kuncíř J (1973) Geochemical evidence for origin of moldavites. Geochim Cosmochim Acta 37:121–131

    Google Scholar 

  132. Skála R, Mizera J, Řanda Z, Žák K, Džiková L (2010) Statistical evaluation of a set of geochemical data from a large collection of moldavites measured by INAA and IPAA. Meteorit Planet Sci 45(Suppl S):A190–A190

    Google Scholar 

  133. Žák K, Skála R, Řanda Z, Mizera J, Heissing K, Ackerman L, Ďurišová J, Jonášová Š, Kameník J, Magna T (2016) Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited. Geochim Cosmochim Acta 179:287–311

    Google Scholar 

  134. Řanda Z, Mizera J, Frána J, Kučera J (2008) Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteorit Planet Sci 43:461–477

    Google Scholar 

  135. Žák K, Skála R, Řanda Z, Mizera J (2012) A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass. Meteorit Planet Sci 47:1010–1028

    Google Scholar 

  136. Kučera J, Knobloch V (1982) Instrumental neutron activation analysis of lechatelierite inclusions from moldavites. Radiochem Radioanal Lett 54:197–208

    Google Scholar 

  137. Knobloch V, Kučera J (1996) Trace elements in quartz grains from the Ries impact crater and lechatelierites from southern Bohemian moldavites. Chem Erde Geochem 56:487–492

    CAS  Google Scholar 

  138. Mizera J, Řanda Z, Kameník J (2016) On a possible parent crater for Australasian tektites. Earth Sci Rev 154:123–137

    CAS  Google Scholar 

  139. Mizera J, Řanda Z, Tomandl I (2012) Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites. J Radioanal Nucl Chem 293:359–376

    CAS  Google Scholar 

  140. Mizera J, Řanda Z, Krausová I (2017) Neutron and photon activation analyses in geochemical characterization of Libyan Desert Glass. J Radioanal Nucl Chem 311:1465–1471

    CAS  Google Scholar 

  141. Řanda Z, Frána J, Mizera J, Kučera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283

    Google Scholar 

  142. Mizera J, Řanda Z (2009) Neutron and photon activation analyses in geochemical characterization of sediment profiles at the Jurassic-Cretaceous boundary. J Radioanal Nucl Chem 282:53–57

    CAS  Google Scholar 

  143. Vandenberghe D, De Corte F, Buylaert J-P, Kučera J, Van den Haute P (2008) On the internal radioactivity in quartz. Radiat Meas 43:771–775

    CAS  Google Scholar 

  144. Bártová H, Kučera J, Musílek L, Trojek T (2014) Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method. Radiat Phys Chem 104:393–397

    Google Scholar 

  145. Bártová H, Kučera J, Musílek L, Trojek T, Gregorová E (2017) Determination of U, Th and K in bricks by gamma-spectrometry, X-ray fluorescence analysis and neutron activation analysis. Radiat Phys Chem 140:161–166

    Google Scholar 

  146. Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259:99–107

    Google Scholar 

  147. Řanda Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem 264:67–76

    Google Scholar 

  148. Borovička J, Řanda Z, Jelínek E (2006) Antimony content of macrofungi from clean and polluted areas. Chemosphere 64:1837–1844

    PubMed  Google Scholar 

  149. Borovička J, Řanda Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog 6:249–259

    Google Scholar 

  150. Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344

    PubMed  Google Scholar 

  151. Borovička J, Kotrba P, Gryndler M, Mihaljevic M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744

    PubMed  Google Scholar 

  152. Borovička J, Dunn CE, Gryndler M, Mihaljevic M, Jelínek E, Rohovec J, Rohosková M, Řanda Z (2010) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit. Soil Biol Biochem 42:83–91

    Google Scholar 

  153. Borovička J, Kubrová J, Rohovec J, Dunn CE (2011) Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals 24:837–845

    PubMed  Google Scholar 

  154. Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185

    PubMed  Google Scholar 

  155. Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ 648:1570–1581

    PubMed  Google Scholar 

  156. Kameník J, Mizera J, Řanda Z (2013) Chemical composition of plant silica phytolits. Environ Chem Lett 11:189–195

    Google Scholar 

  157. Rakovič M, Kučera J, Pilecká N, Povýšil C (1992) Determination of the sodium-to-calcium ratio in sections of the undecalcified bone tissue by neutron activation analysis. J Radioanal Nucl Chem 165:41–48

    Google Scholar 

  158. Rakovič M, Foltýnová V, Pilecká N, Povýšil C, Kučera J (1995) Sodium-to-calcium ratio in sections of human male individuals of different age categories as determined by INAA. J Radioanal Nucl Chem 200:205–209

    Google Scholar 

  159. Rakovič M, Kučera J, Pilecká N, Polívková J (1994) Determination of sodium-to-calcium ratio in mouse femora by INAA. Biol Trace Elem Res 43(45):323–326

    PubMed  Google Scholar 

  160. Rakovič M, Broulík P, Kučera J, Foltýnová V, Pilecká N (1995) Determination of the sodium-to-calcium ratio in femora of normal and diabetic rats by INAA. J Radioanal Nucl Chem 199:471–476

    Google Scholar 

  161. Foltýnová V, Voska L, Povýšil C, Kučera J, Pilecká N, Rakovič M (1995) A comparison of sodium amounts in compact bone, red marrow and yellow marrow sections as determined by instrumental neutron activation analysis. J Radioanal Nucl Chem 201:477–480

    Google Scholar 

  162. Kvíčala J, Zamrazil V, Čeřovská J, Bednář J, Janda J (1995) Evaluation of selenium supply and status of inhabitants in 3 selected rural and urban regions of the Czech Republic. Biol Trace Elem Res 47:365–375

    PubMed  Google Scholar 

  163. Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2008) Selenium status of South Bohemian seniors characterized by INAA of blood serum. J Radioanal Nucl Chem 278:537–541

    Google Scholar 

  164. Kvíčala J, Zamrazil V, Němeček J, Anke M (2008) Intake of selenium by seniors of South Bohemia and urine selenium of seniors in the course of a 1-year supplementation by various selenium species. Trace Elem Electrolytes 25:21–24

    Google Scholar 

  165. Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2010) Influence of age on selenium status in the course of supplementation. Trace Elem Electrolytes 27:220–224

    Google Scholar 

  166. Kvíčala J, Zamrazil V, Němeček J, Jiránek V (2011) Influence of of long-term supplementation by various quantities of yeast-bound selenium upon selenium status of South Bohemia seniors. Trace Elem Electrolytes 28:11–17

    Google Scholar 

  167. Kvíčala J, Hrdá P, Zamrazil V, Němeček J, Hill M, Jiránek V (2009) Effect of selenium supplementation on thyroid antibodies. J Radioanal Nucl Chem 280:275–279

    Google Scholar 

  168. Kvíčala J, Havelka J, Zeman J, Němec J (1991) Determination of some trace elements in the thyroid gland by INAA. J Radioanal Nucl Chem 149:267–274

    Google Scholar 

  169. Kvíčala J, Jiránek V (1999) INAA of serum zinc of inhabitants in five regions of the Czech Republic. Biol Trace Elem Res 71–72:21–30

    PubMed  Google Scholar 

  170. Kranda K, Kučera J, Bäurle J (2006) Trace elements monitored with neutron activation analysis during neurodegeneration in brains of mutant mice. J Radioanal Nucl Chem 269:555–559

    CAS  Google Scholar 

  171. Bäurle J, Kučera J, Frischmuth S, Lambertz M, Kranda K (2009) Dynamics of trace element concentration during development and excitotoxic cell death in the cerebellum of Lurcher mutant mice. Brain Pathol 19:586–595

    PubMed  Google Scholar 

  172. Galinha C, Freitas MC, Pacheco AMG, Kameník J, Kučera J, Anawar HM, Coutinho J, Maçãs B, Almeida AS (2012) Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis. J Radioanal Nucl Chem 294:349–354

    CAS  Google Scholar 

  173. Galinha C, Pacheco AMG, Freitas MC, Fikrle M, Kučera J, Coutinho J, Maçãs B, Almeida AS, Wolterbeek HT (2015) Selenium in bread and durum wheats grown under a soil supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis. J Radioanal Nucl Chem 304:139–143

    CAS  Google Scholar 

  174. Kučera J, Kameník J (2015) Improving iodine homogeneity in NIST SRM 1548a typical diet by cryogenic grinding. Accredit Qual Assur 20:189–194

    Google Scholar 

  175. Krausová I, Cejnar R, Kučera J, Dostálek P (2014) Impact of the brewing process on the concentration of silicon in lager beer. J Inst Brew 120:433–437

    Google Scholar 

  176. Kučera J, Kubešová M, Bartoníček B (2014) Determination of elemental impurities in polymer materials of electrical cables of safety systems of nuclear power plants by k 0-INAA. J Radioanal Nucl Chem 300:685–691

    Google Scholar 

  177. Kučera J, Cabalka M, Ferencei J, Kubešová M, Strunga V (2016) Determination of elemental impurities in polymer materials of electrical cables for use in safety systems of nuclear power plants and for data transfer in the Large Hadron Collider by instrumental neutron activation analysis. J Radioanal Nucl Chem 309:1341–1348

    Google Scholar 

  178. Kameník J, Dragounová K, Kučera J, Bryknar Z, Trepakov VA, Strunga V (2017) Determination of vanadium in titanate-based ferroelectrics by INAA with discriminating gamma-ray spectrometry. J Radioanal Nucl Chem 311:1333–1338

    Google Scholar 

  179. Kameník J, Amsil H, Kučera J (2015) Determination of elemental impurities in phosphoric acid by INAA employing a novel method of phosphate precipitation. J Radioanal Nucl Chem 304:157–162

    Google Scholar 

  180. Wong CHA, Sofer Z, Kubešová M, Kučera J, Matějková S, Pumera M (2014) Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc Natl Acad Sci 111:13774–13779

    CAS  PubMed  Google Scholar 

  181. Kameník J, Simões FRF, Costa PMFJ, Kučera J, Havránek V (2018) INAA and ion-beam analysis of elemental admixtures in carbon-based nanomaterials for battery electrodes. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6200-y

    Article  Google Scholar 

  182. Kučera J, Novák JK, Kranda K, Poncar J, Krausová I, Soukal L, Cunin O, Lang M (2008) INAA and petrological study of sandstones from the Angkor monuments. J Radioanal Nucl Chem 278:299–306

    Google Scholar 

  183. Kmošek J, Odler M, Fikrle M, Kochergina YV (2018) Invisible connection. Early Dynastic and Old Kingdom Egyptian metalwork in the Egyptian Museum of Leipzig University. J Archeol Sci 96:191–207

    Google Scholar 

  184. Rasmussen KL, Kučera J, Skytte L, Kameník J, Havránek V, Smolík J, Velemínský P, Lynnerup N, Bruzek J, Vellev J (2013) Was he murdered or was he not?—Part I: analyses of mercury in the remains of Tycho Brahe. Archaeometry 55:1187–1195

    CAS  Google Scholar 

  185. Kučera J, Rasmussen KL, Kameník J, Kubešová M, Skytte L, Povýšil C, Karpenko V, Havránek V, Velemínský P, Lynnerup N, Bruzek J, Smolík J, Vellev J (2017) Was he murdered or was he not?—Part II: multi-elemental analyses of hair and bone samples from Tycho Brahe and histopathology of his bones. Archaeometry 59:918–933

    Google Scholar 

  186. Greenberg RR, Bode P, Fernandes EADN (2011) Neutron activation analysis: a primary method of measurement. Spectrochim Acta Part B 66:193–241

    CAS  Google Scholar 

  187. Kučera J, Soukal L (1988) Homogeneity tests and certification analyses of coal fly ash reference materials by instrumental neutron activation analysis. J Radioanal Nucl Chem 121:245–259

    Google Scholar 

  188. Kučera J, Soukal L (1989) Homogeneity tests and certification analyses of the IRANT coal fly ash reference material ECO by instrumental neutron activation analysis. J Radioanal Nucl Chem 134:209–219

    Google Scholar 

  189. Kučera J, Soukal L (1993) Neutron activation analysis of new botanical reference materials—part II: evaluation of Czechoslovak green algae, lucerne, wheat and rye bread flour. Fresenius J Anal Chem 345:193–197

    Google Scholar 

  190. Kučera J, Mader P, Miholová D, Cibulka J, Poláková M, Kordík D (1990) Preparation of the Bovine Liver 12-02-01 reference material and the certification of element contents from an interlaboratory comparison. Fresenius J Anal Chem 338:66–71

    Google Scholar 

  191. Kučera J, Mader P, Miholová D, Cibulka J, Faltejsek J, Kordík D (1995) Preparation of the bovine kidney and bovine muscle reference materials and the certification of element contents from interlaboratory comparisons. Fresenius J Anal Chem 352:66–72

    Google Scholar 

  192. Kučera J, Sychra V, Horáková J, Soukal L (1997) Use of INAA in the preparation of a set of soil reference materials with certified values of total element contents. J Radioanal Nucl Chem 215:147–155

    Google Scholar 

  193. Kučera J, Sychra V, Koubek J (1998) A set of four soil reference materials with certified values of total element contents and their extractable fractions. Fresenius J Anal Chem 360:402–405

    Google Scholar 

  194. Kučera J (1995) Elemental characterization of new Polish and U.S. NIST geological, environmental and biological reference materials by neutron activation analysis and comments on the methodology of interlaboratory comparisons. Chem Anal (Warsaw) 40:405–421

    Google Scholar 

  195. De Goeij JJM, Kosta L, Byrne AR, Kučera J (1983) Problems in current procedures for establishing recommended values of trace-element levels in biological reference materials, illustrated by IAEA Milk Powder A-11. Anal Chim Acta 146:161–169

    Google Scholar 

  196. Zeisler R, Deckner R, Zeiller E, Doucha J, Mader P, Kučera J (1998) Single cell green algae reference materials with managed levels of heavy metals. Fresenius J Anal Chem 360:429–432

    CAS  Google Scholar 

  197. Kučera J, Parr RM, Smodiš B, Fajgelj A, Mattiuzzi M, Havránek V (2000) Use of INAA, PIXE and XRF in homogeneity testing of new IAEA reference air filters. J Radioanal Nucl Chem 244:121–126

    Google Scholar 

  198. Kučera J, Smodiš B, Burns K, De Regge P, Campbell M, Havránek V, Makarewicz M, Toervenyi A, Zeiller E (2001) Preparation and characterization of a set of IAEA reference air filters for quality control in air-pollution studies. Fresenius J Anal Chem 370:229–233

    PubMed  Google Scholar 

  199. Bacquart T, Moens A, Linsinger T (2014) Certification report. The certification of the gold mass fraction in Al–0.1% Au alloy: ERM®–EB530A, B, and C. EUR 26830 EN, Publication Office of the European Union, Luxembourg

  200. Roebben G, Derbyshire M, Ingelbrecht C, Lamberty A (2006) Certification of uranium mass fraction in IRMM-540R and IRMM-541 uranium dopped glasses. Report EUR 22111EN, IRMM Geel, Belgium

  201. Kučera J, Soukal L, Horáková J (1993) Neutron activation of new botanical reference materials. Part I—US NIST apple and peach leaves SRMs. Fresenius J Anal Chem 345:188–192

    Google Scholar 

  202. US National Institute of Standards and Technology (2014) Certificate of analysis, Standard Reference Material® 1570a Trace Elements in Spinach Leaves. Gaithersburg, MD, 25 Feb 2014

  203. US National Institute of Standards and Technology (2011) Certificate of analysis, Standard Reference Material® 2783 Air Particulate on Filter Media. Gaithersburg, MD, 13 Dec 2011

  204. Kučera J, Soukal L (1998) Low uncertainty determination of manganese and vanadium in biological and environmental reference materials. Fresenius J Anal Chem 360:415–418

    Google Scholar 

  205. Zeisler R, Tomlin BE, Murphy KE, Kučera J (2009) Neutron activation analysis with pre- and post-irradiation chemical separation for the value assignments of Al, V, and Ni in the new bovine liver SRM 1577C. J Radioanal Nucl Chem 282:69–74

    CAS  Google Scholar 

  206. Kučera J, Bennett JW, Oflaz R, Paul RL, Fernandes EADN, Kubešová M, Bacchi MA, Stopic AJ, Sturgeon RE, Grinberg P (2015) Elemental characterization of single-wall carbon nanotube certified reference material by neutron and prompt γ activation analysis. Anal Chem 87:3699–3705

    PubMed  Google Scholar 

  207. Mader P, Kučera J, Cibulka J, Miholová D (1989) Verification of liver decomposition and cadmium and lead determination by differential pulse anodic stripping voltammetry from interlaboratory experiment. Chem Listy 83:765–773 (in Czech)

    CAS  Google Scholar 

  208. Mader P, Száková J, Kučera J (1994) Interlaboratory analysis of IRM NSC-21 Compost Vitahum. Biol Trace Elem Res 43–45:633–641

    PubMed  Google Scholar 

  209. Kučera J, Mader P, Miholová D, Száková J, Stejskalová I, Štěpánek V (1998) Proficiency tests using four batches of green alga with controlled levels of cadmium. Fresenius J Anal Chem 360:439–442

    Google Scholar 

  210. Sysalová J, Kučera J, Kotlík B, Havránek V (2002) Quality control materials for the determination of trace elements in airborne particulate matter. Anal Bioanal Chem 373:195–199

    PubMed  Google Scholar 

  211. US National Institute of Standards and Technology (1998) Certificate of analysis, Standard Reference Material® 1648 Urban Particulate Matter. Gaithersburg, MD, 28 Apr 1998

  212. US National Institute of Standards and Technology (2008) Report of investigation, Reference Material 8414 Bovine Muscle Powder, Gaithersburg, MD, 20 Feb 2008

  213. Mizera J, Řanda Z (2010) Instrumental and photon activation analysis of selected geochemical reference materials. J Radioanal Nucl Chem 284:157–163

    CAS  Google Scholar 

  214. Kameník J, Kučera J, Borovička J (2015) Increase of sodium mass fraction in NIST standard reference materials 1515 apple leaves and 1547 peach leaves studied by INAA. In: 14th international conference on modern trends and activation analysis, Book of abstracts, Delft, The Netherlands, Aug 23–28 2015, p 61

  215. Byrne AR, Kučera J (1997) Role of the self-validation principle of NAA in the quality assurance of bioenvironmental studies and in the certification of reference materials. In: Proceedings of international symposium on harmonization of health related environ measurements using nuclear and isotopic techniques, Hyderabad, India, 4–7 Nov 1996. IAEA, Vienna, pp 223–238

  216. Kučera J, Kofroňová K (2011) Determination of As by instrumental neutron activation analysis in sectioned hair samples for forensic purposes: chronic or acute poisoning? J Radioanal Nucl Chem 287:769–772

    Google Scholar 

  217. Kučera J, Kameník J, Havránek V (2018) Hair elemental analysis for forensic science using nuclear and related analytical methods. Forensic Chem 7:65–74

    Google Scholar 

  218. Juna J, Konečný K, Vobecký M (1969) Nuclear reaction method for the determination of boron. Coll Czechoslov Chem Commun 34:1605–1611

    Google Scholar 

  219. Konečný K, Vobecký M, Juna J (1969) Non-destructive determination of boron in metallic alloys by means of a nuclear reaction. Jaderná energie 15:128–130 (in Czech)

    Google Scholar 

  220. Vobecký M, Juna J, Konečný K (1973) Determination of some lanthanides by the measurement of prompt gamma induced by neutrons. Radioisotopy 14:547–560 (in Czech)

    Google Scholar 

  221. Honzátko J, Tomandl I (2000) Boron concentration measurement system for the Czech BNCT project. AIP Conf Proc 579:749–750

    Google Scholar 

  222. Wang L, Sofer Z, Simek P, Tomandl I, Pumera M (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem 117:23251–23257

    CAS  Google Scholar 

  223. Poh HL, Simek P, Sofer Z, Tomandl I, Pumera M (2013) Boron and nitrogen doping of grapheme via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J Mater Chem A 1:13146–13153

    CAS  Google Scholar 

  224. Viererbl L, Lahodová Z, Klupák V, Sus F, Kučera J, Kůs P, Marek M (2011) Transmutation detectors. Nucl Instrum Methods A 632:109–111

    CAS  Google Scholar 

  225. Tomandl I, Viererbl L, Lahodová Z, Klupák V, Fikrle M (2014) Determination of trace concentrations of transmuted stable nuclides in TMD detectors using PGAA. J Radioanal Nucl Chem 300:1141–1149

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank to J. Mizera, J. Kameník, and J. Borovička for their helpful comments and additions. This work was supported by the Czech Science Foundation within Project P108/12/G108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kučera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kučera, J. Activation analysis in Czechoslovakia and in the Czech Republic: more than 50 years of activities. J Radioanal Nucl Chem 318, 1473–1492 (2018). https://doi.org/10.1007/s10967-018-6257-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6257-7

Keywords

  • Neutron activation analysis
  • Photon activation analysis
  • Methodological developments
  • Radiochemical separations
  • Applications in science and technology