Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 2117–2127 | Cite as

Poly (β-cyclodextrin)/bentonite composite: synthesis mechanism and adsorption property for cesium in water

  • Hongjuan LiuEmail author
  • Shuibo XieEmail author
  • Xichen Zhang
  • Yingjiu Liu
  • Taotao Zeng


A poly(β-Cyclodextrin)/bentonite composite (β-CD/BNC) were characterized by N2–BET measurement, scanning electron microscopy, energy dispersive spectrometer, fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. Its synthesis mechanism of graft polymerisation was expounded. The maximum sorption capacities of Cs+ onto β-CD/BNC in absence and presence of Cl and CO32− were 48.83 mg g−1, 48.90 mg g−1, and 46.19 mg g−1, respectively. The effect of Cl and CO32− on Cs+ adsorption was not obvious. β-CD/BNC displayed good stability and reusability. The main adsorption mechanism of cesium by β-CD/BNC was ion exchange, and the surface coordination was subordinated mechanism.


Bentonite β-CD/BNC Cesium Characterization Adsorption 



This work was financially supported by the Hunan Natural Science Foundation (2018JJ3420), the National Natural Science Foundation of China (11475080), the Graduate Student Research Innovation Project of Hunan Province (CX2016B427).


  1. 1.
    Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinkingwaters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160(5):142–149CrossRefGoogle Scholar
  2. 2.
    Zong Y, Zhang Y, Lin X, Ye D, Luo X, Wang J (2017) Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(I) removal from contaminated water. J Radioanal Nucl Chem 311(3):1577–1591CrossRefGoogle Scholar
  3. 3.
    Liu H, Xie S, Wang T, Liu Y, Zeng T (2017) Effect of coexisting cations on the adsorption of cesium onto poly (β-cyclodextrin)/bentonite composite. J Radioanal Nucl Chem 312(7):557–565CrossRefGoogle Scholar
  4. 4.
    Du Z, Jia M, Wang X (2013) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate (II) composite spheres. J Radioanal Nucl Chem 298(1):167–177CrossRefGoogle Scholar
  5. 5.
    Sheha RR (2012) Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J Colloid Interf Sci 388(1):21–30CrossRefGoogle Scholar
  6. 6.
    Wendling LA, Harsh JB, Palmer CD, Hamilton MA, Flury M (2004) Cesium sorption to illite as affected by oxalate. Clays Clay Miner 52(52):375–381CrossRefGoogle Scholar
  7. 7.
    Zhang H, Kim YK, Hunter TN, Brown AP, Lee JW, Harbottle D (2017) Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. J Mater Chem A 5(29):15130–15143CrossRefGoogle Scholar
  8. 8.
    Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composite. J Hazard Mater 274(12):46–52CrossRefGoogle Scholar
  9. 9.
    Lee JO, Cho WJ, Choi H (2013) Sorption of cesium and iodide ions onto KENTEX-bentonite. Environ Earth Sci 70(5):2387–2395CrossRefGoogle Scholar
  10. 10.
    Liu X, Cheng C, Xiao C, Shao D, Xu Z, Wang J, Hu S, Li X, Wang W (2017) Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution. Appl Clay Sci 411:331–337Google Scholar
  11. 11.
    Sheng G, Shao X, Li Y, Li J, Dong H, Cheng W, Gao X, Huang Y (2014) Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na–bentonite and an Investigation of mechanism. J Phys Chem A 118(16):2952–2958CrossRefGoogle Scholar
  12. 12.
    Heydari A, Sheibani H (2015) Fabrication of poly(b-cyclodextrin-co-citric acid)/bentonite clay nanocomposite hydrogel: thermal and absorption properties. RSC Adv 5(100):82438–82449CrossRefGoogle Scholar
  13. 13.
    Gao Y, Guo Y, Zhang H (2016) Iron modified bentonite: enhanced adsorption performance for organic pollutant and its regeneration by heterogeneous visible light photo-Fenton process at circumneutral pH. J Hazard Mater 302:105–113CrossRefGoogle Scholar
  14. 14.
    Fossokankeu E, Waanders F, Fourie CL (2016) Adsorption of Congo Red by surfactant-impregnated bentonite clay. Desalin Water Treat 57(57):1–9CrossRefGoogle Scholar
  15. 15.
    Alver BE (2017) Adsorption studies of hydrogen and ethylene on cation-exchanged bentonite. Clay Miner 52(1):67–74CrossRefGoogle Scholar
  16. 16.
    Heydari A, Khoshnood H, Sheibani H, Doostan F (2017) Polymerization of β-cyclodextrin in the presence of bentonite clay to produce polymer nanocomposites for removal of heavy metals from drinking water, Polymers for Advanced Technologies. Polym Adv Technol 28:524–532CrossRefGoogle Scholar
  17. 17.
    Du S, Wang L, Xue N, Wu T, Pei M, Sui W, Guo W (2016) Cationic polymer grafted-bentonite by Ce(IV)-redox system for adsorption of the anionic dye. J Inorg Organomet P 27(1):249–256CrossRefGoogle Scholar
  18. 18.
    He YF, Zhang L, Yan DZ, Liu SL, Wang H, Li HR, Wang RM (2012) Poly(acrylic acid) modifying bentonite with in situ polymerisation for removing lead ions. Water Sci Technol 65(8):1383–1391CrossRefGoogle Scholar
  19. 19.
    He Y, Pei M, Xue N, Wang L, Guo W (2016) Synthesis of sodium polyacrylate–bentonite using in situ polymerisation for Pb2+ removal from aqueous solutions. RSC Adv 6(53):48145–48154CrossRefGoogle Scholar
  20. 20.
    Nithya R, Sudha PN (2017) Removal of heavy metals from tannery effluent using chitosan-g-poly(butylacrylate)/bentonite nanocomposite as an adsorbent. Text Cloth Sustain 2(1):7CrossRefGoogle Scholar
  21. 21.
    Wang C, Yang D, Zhang X, Tang Y, Li J, Hu J (2009) Preparation of water-soluble multi-walled carbon nanotubes by Ce(IV)-induced redox radical polymerization. Prog Nat Sci 19(8):991–996CrossRefGoogle Scholar
  22. 22.
    Lv P, Bin Y, Li Y, Chen R, Wang X, Zhao B (2009) Studies on graft copolymerization of chitosan with acrylonitrile by the redox system. Polymer 50(24):5675–5680CrossRefGoogle Scholar
  23. 23.
    Solomon DH, Hawthorne DG Chemistry of pigments and fillers. Hawthorne Wiley, 1983Google Scholar
  24. 24.
    Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63(8):1447–1455CrossRefGoogle Scholar
  25. 25.
    Pourfarzolla A (2014) Synthesis of glycoconjugated polymer based on polystyrene and nanoporousβ-cyclodextrin to remove copper (II) from water pollution. Int J Polym Mater Polym Biomater 63(1):1–6CrossRefGoogle Scholar
  26. 26.
    Koopmans C, Ritter H (2008) Formation of physical hydrogels via host-guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules 41(20):7418–7422CrossRefGoogle Scholar
  27. 27.
    Mocanu G, Vizitiu D, Carpov A (2001) Cyclodextrin Polymers. J Bioact Compat Pol 16(16):315–342CrossRefGoogle Scholar
  28. 28.
    Yu JC, Jiang ZT, Liu HY, Yu J, Zhang L (2003) β-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Anal Chim Acta 477(1):93–101CrossRefGoogle Scholar
  29. 29.
    Liu HJ, Xie SB, Xia LS, Tang Q, Kang X, Huang F (2016) Study on adsorptive property of bentonite for cesium. Environ Earth Sci 75(2):148CrossRefGoogle Scholar
  30. 30.
    Xiao H, Cezar N (2005) Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems. J Colloid Interf Sci 283(2):406–413CrossRefGoogle Scholar
  31. 31.
    Heydari A, Khoshnood H, Sheibani H, Doostan F (2016) Polymerization of β-cyclodextrin in the presence of bentonite clay to produce polymer nanocomposites for removal of heavy metals from drinking water. Polym Adv Technol 28:524–532CrossRefGoogle Scholar
  32. 32.
    Song W, WANG X, WANG Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17(1):398–406CrossRefGoogle Scholar
  33. 33.
    Foo KY, Hameed BH (2011) Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chem Eng J 166(2):792–795CrossRefGoogle Scholar
  34. 34.
    Shao L, Zhong J, Ren Y, Tang H, Wang X (2017) Perhydroxy-CB[6] decorated graphene oxide composite for uranium(VI) removal. J Radioanal Nucl Chem 311(1):627–635CrossRefGoogle Scholar
  35. 35.
    Li FH, Yang Z, Weng HQ, Chen G, Lin MZ, Zhao C (2018) High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem Eng J 332:340–350CrossRefGoogle Scholar
  36. 36.
    Sengupta A, Gupta NK, Adya VC (2017) Evaluation of amide functionalized carbon nanotubes for efficient and selective removal of neptunium: understanding isotherm, kinetics, stripping and radiolytic stability. J Radioanal Nucl Chem 314(2):1393–1404CrossRefGoogle Scholar
  37. 37.
    Jong BHWSD, Ellerbroek D, Spek AL (2010) Low-temperature structure of lithium nesosilicate, Li4SiO4, and its Li1s and O1s X-ray photoelectron spectrum. Acta Cryst 50(5):511–518CrossRefGoogle Scholar
  38. 38.
    Wang TH, Liu TY, Wu DC, Li MH, Chen JR, Teng SP (2010) Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository. J Hazard Mater 173(1):335–342CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Nuclear Science and Technology, University of South ChinaHengyangPeople’s Republic of China
  2. 2.Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangPeople’s Republic of China
  3. 3.Hunan Province Key Laboratory of Pollution Control and Resources Reuse TechnologyUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations