Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 3, pp 1949–1966 | Cite as

Production routes of 107,109Cd radioisotopes via charged particle induced nuclear reactions

  • F. Tárkányi
  • F. DitróiEmail author
  • S. Takács
  • J. Csikai
  • A. Hermanne
  • M. S. Uddin
  • M. Baba
Article
  • 134 Downloads

Abstract

Activation cross sections of application related 107Cd and 109Cd via proton, deuteron, alpha particle induced reactions on palladium, 3He and alpha particle induced nuclear reactions on silver and deuteron induced reactions on cadmium and indium were measured by using the stacked foil irradiation technique and gamma-ray spectrometry. The cross sections were compared with the earlier experimental data and theoretical predictions. Integral yields were deduced on the basis of experimental data. Different production routes for both radioisotopes are compared.

Keywords

Medical radioisotopes 107Cd 109Cd Proton, deuteron, 3He and 4He irradiations Nuclear reaction model code Physical yield 

Notes

Acknowledgements

The authors acknowledge the support of the respective institutions and the accelerator staffs for providing the beam time and experimental facilities.

References

  1. 1.
    Mukhopadhyay B, Mukhopadhyay K (2011) Applications of the carrier free radioisotopes of second transition series elements in the field of nuclear medicine. Nucl Med Radiat Therapy 2:115Google Scholar
  2. 2.
    Sadeghi M, Mirzaee M, Gholamzadeh Z, Karimian A, Novin FB (2009) Targetry and radiochemistry for no-carrier-added production of Cd-109. Radiochim Acta 97(2):113–116.  https://doi.org/10.1524/ract.2009.1576 CrossRefGoogle Scholar
  3. 3.
    Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting Cd-107 tracer. BMC Plant Biol 11:172.  https://doi.org/10.1186/1471-2229-11-172 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fassbender M, Nortier FM, Phillips DR, Hamilton VT, Heaton RC, Jamriska DJ, Kitten JJ, Pitt LR, Salazar LL, Valdez FO, Peterson EJ (2004) Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility. Radiochim Acta 92(4–6):237–243.  https://doi.org/10.1524/ract.92.4.237.35596 CrossRefGoogle Scholar
  5. 5.
    Mirzaii M, Sadeghi M, Gholamzadeh Z (2009) Targetry for cyclotron production of no-carrier-added cadmium-109 from Ag-nat(p, n)Cd-109 reaction. Iran J Radiat Res 6(4):201–206Google Scholar
  6. 6.
    Forrest RA, Kalbach WC, Avrigeanu M, Avrigeanu V, Ignatyuk AV, Tárkányi F, Trkov A, Kopecky J, Fischer U (2013) FENDL-3 Library. Final Report of the Coordinated Research Project on Nuclear Data Libraries for Advanced Systems: Fusion Devices INDC(NDS)-0645. IAEA Nuclear Data Section. https://www-nds.iaea.org/publications/indc/indc-nds-0645.pdf
  7. 7.
    Gul K, Hermanne A, Mustafa MG, Nortier FM, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Takács S, Tárkányi F, Zhuang Y (2001) Charged particle cross-section database for medical radioisotope production diagnostic radioisotopes and monitor reactions. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. Vienna, IAEA. IAEA-TECDOC-1211, http://www.nds.or.at/medical. IAEA
  8. 8.
    Betak E, Caldeira AD, Capote R, Carlson BV, Choi HD, Guimaraes FB, Ignatyuk AV, Kim SM, Király B, Kovalev SF, Menapace E, Nortier FM, Pompeia P, Qaim SM, Scholten B, Shubin YN, Sublet J-C, Tárkányi F, Nichols AL (2011) Nuclear data for the production of therapeutic radionuclides. Technical Reprots Series, vol 473. IAEA, ViennaGoogle Scholar
  9. 9.
    IAEA-NDS (2010) Thin layer activation (TLA) technique for wear measurement. IAEA. http://www-nds.iaea.org/tla/
  10. 10.
    Hermanne A, Tárkányi F, Takács S, Shubin YN (2005) Experimental determination of cross section of alpha-induced reactions on Pd-nat. Nucl Instrum Methods Phys Res Sect B 229(3–4):321–332.  https://doi.org/10.1016/j.nimb.2004.12.126 CrossRefGoogle Scholar
  11. 11.
    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2005) Experimental studies on excitation functions of the proton-induced activation reactions on silver. Appl Radiat Isot 62(4):533–540.  https://doi.org/10.1016/j.apradiso.2004.10.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Uddin MS, Baba M, Hagiwara M, Tárkányi F, Ditrói F, Takács S, Hermanne A (2006) Experimental studies of the deuteron-induced activation cross-sections on Ag-nat. Appl Radiat Isot 64(9):1013–1019CrossRefGoogle Scholar
  13. 13.
    Tárkányi F, Király B, Ditrói F, Takács S, Csikai J, Hermanne A, Uddin MS, Hagiwara M, Baba A, Ido T, Shubin YN, Kovalev SF (2006) Activation cross-sections on cadmium: proton induced nuclear reactions up to 80 MeV. Nucl Instrum Methods Phys Res Sect B 245(2):379–394.  https://doi.org/10.1016/j.nimb.2005.12.004 CrossRefGoogle Scholar
  14. 14.
    Hermanne A, Tárkányi F, Ditrói F, Takács S, Rebeles RA, Uddin MS, Hagiwara M, Baba M, Shubin Y, Kovalev SF (2006) Experimental study of the excitation functions of proton induced reactions on Sn-nat up to 65 MeV. Nucl Instrum Methods Phys Res Sect B 247(2):180–191.  https://doi.org/10.1016/j.nimb.2006.02.005 CrossRefGoogle Scholar
  15. 15.
    Tárkányi F, Király B, Ditrói F, Takács S, Csikai J, Hermanne A, Uddin MS, Hagiwara M, Baba M, Ido T, Shubin YN, Kovalev SF (2007) Activation cross sections on cadmium: deuteron induced nuclear reactions up to 40 MeV. Nucl Instrum Methods Phys Res Sect B 259(2):817–828.  https://doi.org/10.1016/j.nimb.2007.01.286 CrossRefGoogle Scholar
  16. 16.
    Takács S, Hermanne A, Tárkányi F, Ignatyuk A (2010) Cross-sections for alpha particle produced radionuclides on natural silver. Nucl Instrum Methods Phys Res Sect B 268(1):2–12.  https://doi.org/10.1016/j.nimb.2009.09.035 CrossRefGoogle Scholar
  17. 17.
    Al-Abyad M, Tarkanyi F, Ditroi F, Takacs S (2014) Excitation function of He-3-particle induced nuclear reactions on natural palladium. Appl Radiat Isot 94:191–199.  https://doi.org/10.1016/j.apradiso.2014.08.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Tárkányi F, Ditrói F, Hermanne A, Takács S, Baba M (2016) Investigation of activation cross sections of proton induced reactions on indium up to 70 MeV for practical applications. Appl Radiat Isot 107:391–400.  https://doi.org/10.1016/j.apradiso.2015.11.027 CrossRefPubMedGoogle Scholar
  19. 19.
    Ditrói F, Tárkányi F, Takács S, Hermanne A, Ignatyuk AV (2017) Activation cross sections of deuteron induced reactions on silver in the 33–50 MeV energy range. Appl Radiat Isot 120:60–65.  https://doi.org/10.1016/j.apradiso.2016.11.018 CrossRefPubMedGoogle Scholar
  20. 20.
  21. 21.
    Székely G (1985) Fgm—a flexible gamma-spectrum analysis program for a small computer. Comput Phys Commun 34(3):313–324.  https://doi.org/10.1016/0010-4655(85)90008-6 CrossRefGoogle Scholar
  22. 22.
    Tárkányi F, Szelecsényi F, Takács S (1991) Determination of effective bombarding energies and fluxes using improved stacked-foil technique. Acta Radiol Suppl 376:72PubMedGoogle Scholar
  23. 23.
    Tárkányi F, Takács S, Gul K, Hermanne A, Mustafa MG, Nortier M, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Youxiang Z (2001) Beam monitor reactions (Chapter 4). Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. TECDOC 1211, vol 1211. IAEAGoogle Scholar
  24. 24.
    NuDat2 database (2.6) (2014) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/
  25. 25.
    Chu SYF, Ekström LP, Firestone RB (2004) WWW Table of Radioactive Isotopes, version 2.1 http://ie.lbl.gov/toi/
  26. 26.
    Q-value calculator (2003) NNDC, Brookhaven National Laboratory. http://www.nndc.bnl.gov/qcalc
  27. 27.
    Andersen HH, Ziegler JF (1977) Hydrogen stopping powers and ranges in all elements. The stopping and ranges of ions in matter, vol 3. Pergamon Press, New YorkGoogle Scholar
  28. 28.
    International-Bureau-of-Weights-and-Measures (1993) Guide to the expression of uncertainty in measurement, 1st edn. International Organization for Standardization, GenevaGoogle Scholar
  29. 29.
    Bonardi M (1987) The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility. In: Paper presented at the Consultants Meeting on Data Requirements for Medical Radioisotope Production, Tokyo, JapanGoogle Scholar
  30. 30.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841CrossRefGoogle Scholar
  31. 31.
    Koning AJ, Rochman D, Kopecky J, Sublet JC, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest R, Henriksson H, Cabellos O, S. G, Leppanen J, Leeb H, Plompen A, Mills R (2015) TENDL-2015: TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2015/tendl2015.html
  32. 32.
    Koning AJ, Rochman D, Sublet JC (2017) TENDL-2017 TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2017/tendl2017.html
  33. 33.
    Hermanne A, Tárkányi F, Takács S, Ditrói F, Baba M, Ohtshuki T, Spahn I, Ignatyuk AV (2009) Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res Sect B 267(5):727–736.  https://doi.org/10.1016/j.nimb.2008.12.017 CrossRefGoogle Scholar
  34. 34.
    Ignatyuk AV (2010) 2nd RCM on FENDL-3. IAEA. http://www-nds.iaea.org/fendl3/RCM2_slides.html
  35. 35.
    Dityuk AI, Konobeyev AY, Lunev VP, Shubin YN (1998) New version of the advanced computer code ALICE-IPPE. INDC (CCP)-410. IAEA, ViennaGoogle Scholar
  36. 36.
    Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715.  https://doi.org/10.1016/j.nds.2007.11.003 CrossRefGoogle Scholar
  37. 37.
    Wing J, Huizenga JR (1962) (p, n) cross sections of V51, Cr52, Cu63, Cu65, Ag107, Ag109, Cd111, Cd114, and La139 from 5 to 10.5 MeV. Phys Rev 128(1):280CrossRefGoogle Scholar
  38. 38.
    Khandaker MU, Kim K, Kim KS, Lee M, Kim G, Cho YS, Lee YO (2008) Production cross-sections of residual radionuclides from proton-induced reactions on Ag-nat up to 40 MeV. Nucl Instrum Methods Phys Res Sect B 266(24):5101–5106.  https://doi.org/10.1016/j.nimb.2008.09.025 CrossRefGoogle Scholar
  39. 39.
    Colle R, Kishore R, Cumming JB (1974) Excitation functions for (p, n) reactions to 25 MeV on 63Cu, 65Cu, and 107Ag. Phys Rev C 9(9):1819–1830CrossRefGoogle Scholar
  40. 40.
    Blaser JP, Boehm F, Marmier P, Peaslee DC (1951) Fonctions d’excitation de la reaction (p, n). I Helv Phys Acta 24:3Google Scholar
  41. 41.
    Peng XF, Long XG, He FQ, Liu MT (1992) Excitation-functions for Ag-107(D, 2n) Cd-107, Ag-109(D, 2n) Cd-109 and Ag-109(D, P) Ag-110 m reactions. Nucl Instrum Methods Phys Res Sect B 68(1–4):145–148.  https://doi.org/10.1016/0168-583x(92)96066-8 CrossRefGoogle Scholar
  42. 42.
    Long XG, Peng XF, He FQ, Liu MT (1991) Production of Cd-107 and Cd-109 by deuteron bombardment of silver. Appl Radiat Isot 42(12):1234–1236CrossRefGoogle Scholar
  43. 43.
    Misaelides P, Munzel H (1980) Excitation-functions for He-3-induced and alpha-induced reactions with Ag-107 and Ag-109. J Inorg Nucl Chem 42(7):937–948.  https://doi.org/10.1016/0022-1902(80)80379-4 CrossRefGoogle Scholar
  44. 44.
    Wasilevsky C, Vedoya MD, Nassiff SJ (1985) Excitation-functions for (α, xn) reactions on Ag-107 and Ag-109. J Radioanal Nucl Chem 89(2):531–543.  https://doi.org/10.1007/Bf02040616 CrossRefGoogle Scholar
  45. 45.
    Hershberger RL, Flynn DS, Gabbard F, Johnson CH (1980) Systematics of proton absorption deduced from (p, p) and (p, n) cross-sections for 2.0- to 6.7-Mev protons on Ag-107, Ag-109 and in-115. Phys Rev C 21(3):896–901.  https://doi.org/10.1103/PhysRevC.21.896 CrossRefGoogle Scholar
  46. 46.
    Johnson CH, Galonsky A, Inskeep CN (1960) Cross sections for (p, n) reactions in intermediate-weight nuclei. Phys Rev A 136:B1719–B1729CrossRefGoogle Scholar
  47. 47.
    Bramblett RL, Bonner TW (1960) Neutron evaporation spectra from (p, n) reactions. Nucl Phys 20:395–407CrossRefGoogle Scholar
  48. 48.
    Dmitriev PP, Konstantinov IO, Krasnov NN (1967) Excitation functions of the reactions Ag-109(p, n); Ag-109(d,2n); Ag-107(a,2n + pn) and yield of Cd-109. At Energy 22(4):386CrossRefGoogle Scholar
  49. 49.
    Röhm HF, Steyn J, Rautenbach WL, Verwey CJ (1970) Excitation function for the 109Ag(d, 2n)109Cd reaction. J Inorg Nucl Chem 32(5):1413–1417.  https://doi.org/10.1016/0022-1902(70)80627-3 CrossRefGoogle Scholar
  50. 50.
    Weixiang Y, Hanlin L, Wenrong Z, Yiwu Z, Xialin Y (1989) The excitation functions of the Ag-107(d,2n) and (d,p) reactions. Beijing Nat. Tandem Accel. Lab., Prog. Report, vol 103. Beijing, ChinaGoogle Scholar
  51. 51.
    Nagame Y, Nakamura Y, Takahashi M, Sueki K, Nakahara H (1988) Pre-equilibrium process in He-3-induced reactions on Co-59, Ag-109, Ta-181 and Bi-209. Nucl Phys A 486(1):77–90.  https://doi.org/10.1016/0375-9474(88)90040-1 CrossRefGoogle Scholar
  52. 52.
    Omori T, Yagi M, Yamazaki H, Shiokawa T (1980) Excitation-functions for He-3-induced reactions on silver. Radiochem Radioanal Lett 44(5):307–314Google Scholar
  53. 53.
    Marten M, Schuring A, Scobel W, Probst HJ (1985) Preequilibrium neutron emission in Ag-109(He-3, Xn) and Cd-111(P, Xn) reactions. Z Phys A Hadron Nucl 322(1):93–103.  https://doi.org/10.1007/Bf01412021 CrossRefGoogle Scholar
  54. 54.
    Porges KG (1956) Alpha excitation functions of silver and copper. Phys Rev 101:225–230CrossRefGoogle Scholar
  55. 55.
    Patel HB, Gadkari MS, Dave B, Singh NL, Mukherjee S (1996) Analysis of the excitation function of alpha-particle-induced reactions on natural silver. Can J Phys 74(9–10):618–625.  https://doi.org/10.1139/P96-090 CrossRefGoogle Scholar
  56. 56.
    Peng XF, Long XG, He FQ, Liu MT (1996) Excitation functions and yields of the reactions induced by alpha-particle bombardment of natural silver. Appl Radiat Isot 47(3):309–313.  https://doi.org/10.1016/0969-8043(95)00276-6 CrossRefGoogle Scholar
  57. 57.
    Fukushima S, Hayashi S, Kume S, Okamura H, Otozai K, Sakamoto K, Yoshizawa Y (1963) Excitation functions for the reactions induced by alpha particles on 107Ag. Nucl Phys 41:275–290CrossRefGoogle Scholar
  58. 58.
    Chaubey AK, Bhardwaj MK, Gautam RP, Singh RKY, Ansari MA, Rizvi IA, Singh H (1990) Preequilibrium decay process in the alpha induced reactions of silver isotopes. Appl Radiat Isot 41(4):401–405CrossRefGoogle Scholar
  59. 59.
    Chuvilskaya TV, Seleznev YG, Shirokova AA, Herman M (1999) The analysis of the isomeric yields in the reactions Ag-107, Ag-109(He-6, He-4, n, 2n), K-41(α n) and Pt-193(α n). Izv Akad Nauk Fiz+ 63(5):1032–1036Google Scholar
  60. 60.
    Haasbroek FJ, Burdzik GF, Cogneau M, Wanet P (1976) Excitation functions and thick-target yields for 67 Ga, 68Ge/68 Ga, 109Cd and 111In induced in natural Zinc and Silver by 100 MeV alpha particles. Council of Scientific and Industrial Research, PretoriaGoogle Scholar
  61. 61.
    Nortier FM, Mills SJ, Steyn GF (1991) Excitation-functions for the production of Cd-109, In-109 and Sn-109 in proton-bombardment of indium up to 200 MeV. Appl Radiat Isot 42(11):1105–1107CrossRefGoogle Scholar
  62. 62.
    Tárkányi F, Ditrói F, Takács S, Hermanne A, Ignatyuk AV (2015) Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50 MeV. Appl Radiat Isot 105:26–31.  https://doi.org/10.1016/j.apradiso.2015.07.015 CrossRefPubMedGoogle Scholar
  63. 63.
    Skakun EA, Klyucharev AP, Rakivnenko YN, Romanii IA (1975) Excitation-functions of (pn)-Reaction and (p,2n)-reaction on cadmium isotopes. Izv an Sssr Fiz 39(1):24–30Google Scholar
  64. 64.
    Otozai K, Kume S, Mito A, Okamura H, Tsujino R (1966) Excitation functions for the reactions induced by protons on Cd up to 37 MeV. Nucl Phys 80:335–348CrossRefGoogle Scholar
  65. 65.
    Hermanne A, Rebeles RA, Van den Winkel P, Tarkanyi F, Takacs S (2014) Activation of Cd-112 by deuteron induced reactions up to 50 MeV: An alternative for In-111 production? Nucl Instrum Methods Phys Res Sect B 339:26–33.  https://doi.org/10.1016/j.nimb.2014.08.016 CrossRefGoogle Scholar
  66. 66.
    Nortier FM, Mills SJ, Steyn GF (1990) Excitation-functions and production-rates of relevance to the production of 111In by proton-bombardment of natCd and natIn up to 100 MeV. Appl Radiat Isot 41(12):1201–1208CrossRefGoogle Scholar
  67. 67.
    Usher OH, Wasilevsky C, Delavegavedoya M, Nassiff SJ (1977) Production cross-sections of in-109g, in-111g, in-113m and Cd-115g formed by deuterons on cadmium. Radiochim Acta 24(2–3):59–63Google Scholar
  68. 68.
    Hermanne A, Adam-Rebeles R, Van den Winkel P, Tarkanyi F, Takacs S (2014) Production of In-111 and (114)mIn by proton induced reactions: an update on excitation functions, chemical separation–purification and recovery of target material. Radiochim Acta 102(12):1111–1126.  https://doi.org/10.1515/ract-2013-2233 CrossRefGoogle Scholar
  69. 69.
    Hahn RL (1965) Interactions of cadmium-106 with alpha particles. Phys Rev 137(6B):B1491–B1499CrossRefGoogle Scholar
  70. 70.
    Gyürky G, Kiss GG, Elekes Z, Fülöp Z, Somorjai E, Palumbo A, Gorres J, Lee HY, Rapp W, Wiescher M, Ozkan N, Guray RT, Efe G, Rauscher T (2006) alpha-induced cross sections of Cd-106 for the astrophysical p process. Phys Rev C 74(2):025805.  https://doi.org/10.1103/Physrevc.74.025805 CrossRefGoogle Scholar
  71. 71.
    Hermanne A, Daraban L, Rebeles RA, Ignatyuk A, Tárkányi F, Takács S (2010) Alpha induced reactions on natCd up to 38.5 MeV: experimental and theoretical studies of the excitation functions. Nucl Instrum Methods Phys Res Sect B 268(9):1376–1391.  https://doi.org/10.1016/j.nimb.2010.01.022 CrossRefGoogle Scholar
  72. 72.
    Khandaker MU, Kim K, Lee M, Kim G (2014) Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium. Nucl Instrum Methods Phys Res Sect B 333:80–91.  https://doi.org/10.1016/j.nimb.2014.04.023 CrossRefGoogle Scholar
  73. 73.
    Dmitriev PP, Molin GA (1981) Radioactive nuclide yields for thick target at 22 MeV proton energy. Vop At Nauki i Tekhn SerYadernye Konstanty 44(5):43Google Scholar
  74. 74.
    Landini L, Osso JA (2001) Simultaneous production of Co-57 and Cd-109 in cyclotron. J Radioanal Nucl Chem 250(3):429–431.  https://doi.org/10.1023/A:1017928501399 CrossRefGoogle Scholar
  75. 75.
    Gruverman IJ, Kruger P (1959) Cyclotron-produced carrier-free radioisotopes; thick target yield data and carrier-free separation procedures. Int J Appl Radiat Isot 5(1):21–31CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchHungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Tandem Accelerator Facilities, Institute of Nuclear Science and TechnologyAtomic Energy Research EstablishmentSavar, DhakaBangladesh
  4. 4.Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan

Personalised recommendations