Skip to main content
Log in

Study on the influence of temperature and humidity on radon exhalation from a radon-containing solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radon exhalation rate and transfer radon velocity between liquid and gas under different temperature and humidity conditions are investigated. The fitting formulas of radon exhalation rate and temperature and humidity are exponential functions, and each exponent is a 2nd-order polynomial. The fitting formula of transfer radon velocity and temperature is Boltzmann function, and the velocity tends to be stable gradually at 25 °C. The fitting formula of transfer radon velocity and humidity is exponential function whose exponent is a 2nd order polynomial, and the velocity increases at first when the humidity was 0.75, then decreases with increasing humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neretnieks I (2013) Some aspects of release and transport of gases in deep granitic rocks: possible implications for nuclear waste repositories. Hydrogeol J 21(8):1701–1716

    Article  CAS  Google Scholar 

  2. Moldrup P, Olesen T, Komatsu T, Schjonning P, Rolston DE (2001) The Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65(3):613–623

    Article  CAS  Google Scholar 

  3. Manoharan S, Sudhakaran S, Williamson TH (2011) Air-gas exchange reevaluated: clinically important results of a computer simulation. Invest Ophthalmic Vis Sci 52(11):8262–8263

    Article  Google Scholar 

  4. Ongori JN, Lindsay R, Mvelase MJ (2015) Radon transfer velocity at the water–air interface. Appl Radiat Isotopes 105:144–149. https://doi.org/10.1016/j.apradiso.2015.07.058

    Article  CAS  Google Scholar 

  5. Luis SQP, Carlos SF, Ismael FM, Jose LGV, Alberto GD (2013) The use of radon as tracer in environmental sciences. Acta Geophys 61(4):848–858

    Article  Google Scholar 

  6. Papp B, Deák F, Horváth Á, Kiss Á, Rajnai G, Cs S (2008) A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole. J Environ Radioact 99(11):1731–1735

    Article  CAS  Google Scholar 

  7. Waska H, Kim S, Kim G, Peterson RN, Burnett WC (2008) An efficient and simple method for measuring 226Ra using the scintillation cell in a delayed coincidence counting system (RaDeCC). J Environ Radioact 99(12):1859–1862

    Article  CAS  Google Scholar 

  8. Burnett WC, Peterson RN, Santos IR, Hicks RW (2010) Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J Hydrol 380(3–4):298–304

    Article  CAS  Google Scholar 

  9. Savoy L, Surbeck H, Hunkeler D (2011) Radon and CO2 as natural tracers to investigate the recharge dynamics of karst aquifers. J Hydrol 406(3):148–157

    Article  CAS  Google Scholar 

  10. Stellato L, Terrasi F, Marzaioli F, Belli M, Sansone U, Celico F (2013) Is 222Rn a suitable tracer of stream-groundwater interactions? A case study from Italy. Appl Geochem 32(2013):108–117

    Article  CAS  Google Scholar 

  11. Nasab SMM, Negarestani A, Mohammadi S (2011) Modeling of the radon exhalation from water to air by a hybrid electrical circuit. J Radioannal Nucl Chem 288(3):813–818

    Article  Google Scholar 

  12. Schmidt A, Schlueter M, Melles M, Schubert M (2008) Continuous and discrete on-site detection of radon-222 in ground-and surface waters by means of an extraction module. Appl Radiat Isotopes 66(12):1939–1944

    Article  CAS  Google Scholar 

  13. Sahoo BK, Mayya YS, Sapra BK (2010) Radon exhalation studies in an Indian uranium tailings pile. Radiat Meas 45(2):237–241

    Article  CAS  Google Scholar 

  14. Kumar A, Chauhan RP, Joshi M (2014) Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements. J Environ Radioact 127(2):50–55

    Article  CAS  Google Scholar 

  15. Sundar SB, Chitra N, Vijayalakshmi I, Danalakshmi B, Chandrasekaran S, Jose MT, Venkatraman B (2015) Soil radioactivity measurements and estimation of radon/thoron exhalation rate in soil samples from Kalpakkam residential complex. Radiat Prot Dosim 164(4):569–574

    Article  CAS  Google Scholar 

  16. Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83(1):91–96

    Article  CAS  Google Scholar 

  17. Iakovleva VS, Ryzhakova NK (2003) Spatial and temporal varitions of radon concentration in soil air. Radiat Meas 36(1–6):385–388

    Article  CAS  Google Scholar 

  18. Sundal AV, Valen V, Soldal O, Strand T (2008) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ 389(2–3):418–428

    Article  CAS  Google Scholar 

  19. Smetanová I, Holý K, Müllerová M, Polášková A (2010) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioannal Nucl Chem 283(1):101–109

    Article  Google Scholar 

  20. Kasztovszky Z, Sajó-Bohus L, Fazekas B (2000) Parameric changes of radon (222Rn) concentration in ground water in Northeastern Hungary. J Environ Radioact 49(2):171–180

    Article  CAS  Google Scholar 

  21. Wanninkhof R, Asher WE, Ho DT, Sweeney C, Mcgillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Mar Sci 1(1):213–244

    Article  Google Scholar 

  22. Chanyotha S, Kranrod C, Burnett WC (2014) Assessing diffusive fluxes and pore water radon activities via a single automated experiment. J Radioannal Nucl Chem 301(2):581–588

    Article  CAS  Google Scholar 

  23. Monnin MM, Seidel JL (1997) Physical models related to radon emission in connection with dynamic manifestations in the upper terrestrial crust: a review. Radiat Meas 28(97):703–712

    Article  CAS  Google Scholar 

  24. Schubert M, Paschke A, Lieberman E, Burnett WC (2012) Air-water partitioning of 222Rn and its dependence on water temperature and salinity. Environ Sci Technol 46(7):3905–3911

    Article  CAS  Google Scholar 

  25. Rogers VC, Nielson KK (1991) Correlations for predicting air permeabilities and radon-222 diffusion coefficients of soils. Health Phys 61(2):225–230

    Article  CAS  Google Scholar 

  26. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60(6):807–815

    Article  CAS  Google Scholar 

  27. Dulaiova H, Burnett WC (2006) Radon loss across the water-air interface (Gulf of Thailand) estimated experimentally from 222Rn–224Ra. Geophys Res Lett 33(5):L05606

    Article  Google Scholar 

  28. Weigel F (1978) Radon Chem Ztg 102:287–299

    CAS  Google Scholar 

  29. Lee JM, Kim G (2006) A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. J Environ Radioact 89(3):219–228

    Article  CAS  Google Scholar 

  30. He ZZ, Xiao DT, Zhao GZ, Qiu SK, Shan J, Fu Y, OuYang Q, Wu XJ (2013) theoretical calculation and experimental determination of iterative correction factor for continuous measurement radon method. At Energy Sci Technol (China) 6(47):1040–1043

    Google Scholar 

  31. The Commission of Science, Technology and Industry for National Defense of the PRC (2001) EJ/T 1133-2001 Regulations for measurement of radon in water. China Nuclear Industry Standard: 3–8

  32. Saâdi Z (2014) On the air-filled effective porosity parameter of rogers and nielson’s (1991) bulk radon diffusion coefficient in unsaturated soils. Health Phys 106(5):598–607

    Article  Google Scholar 

  33. Calugaru DG, Crolet JM (2002) Identification of radon transfer velocity coefficient between liquid and gaseous phases. Cr Mec 330(5):377–382

    Article  CAS  Google Scholar 

  34. Baskaran M (2016) Radon: a tracer for geological, geophysical and geochemical studies. Geochemistry. Springer, Berlin. https://doi.org/10.1007/978-3-319-21329-3

    Book  Google Scholar 

  35. Schubert M, Paschke A, Bednorz D, Burkin W, Stieglitz T (2012) Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods. Environ Sci Technol 46(16):8945–8951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Yongjun Yan for his advice in preparing the manuscript, especially regarding data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ding, D. & Ye, J. Study on the influence of temperature and humidity on radon exhalation from a radon-containing solution. J Radioanal Nucl Chem 318, 1099–1107 (2018). https://doi.org/10.1007/s10967-018-6224-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6224-3

Keywords

Navigation