Skip to main content
Log in

210Po and 210Pb in fish from northern Aegean Sea and radiation dose to fish consumers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the activity concentrations of 210Po and 210Pb in 15 different commercial fish species collected around Gökçeada Island (northern Aegean Sea) in 2016. The distribution of 210Po and 210Pb was investigated in fish tissues and significant differences (P < 0.05) in radionuclide concentrations were noted between muscle, gills, and liver in each species. 210Po activity concentrations in tissues were systematically higher than those of 210Pb and the average values of 210Po/210Pb concentration ratios were calculated at 6.6 ± 1.5, 8.4 ± 3.2, and 10.2 ± 1.6 in muscle, gills, and liver, respectively. The annual effective dose to consumers through 210Po ingestion with fish filet averaged 62 µSv year−1 (range 5.5–160 µSv year−1). This effective dose is in the range of natural radiation doses reported worldwide for humans through ingestion of sea food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carvalho F (1988) 210Po in marine organisms: a wide range of natural radiation dose domains. Radiat Prot Dosim 24:113–117

    Article  CAS  Google Scholar 

  2. Livingstone HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean Coast Manag 43:689–712

    Article  Google Scholar 

  3. Carvalho FP (1995) 210Po and 210Pb intake by the Portuguese population: the contribution of seafood in the dietary intake of 210Po and 210Pb. Health Phys 69:469–480

    Article  CAS  Google Scholar 

  4. Carvalho FP, Oliveira JM, Alberto G (2011) Factors affecting 210Po and 210Pb activity concentrations in mussels and implications for environmental bio-monitoring programmes. J Environ Radioact 102:128–137

    Article  CAS  Google Scholar 

  5. Garcia-Orellana J, López-Castillo E, Casacuberta N, Rodellas V, Masqué P, Carmona-Catot G, Vilarrasa M, García-Berthou E (2016) Influence of submarine groundwater discharge on 210Po and 210Pb bioaccumulation in fish tissues. J Environ Radioact 155:46–54

    Article  Google Scholar 

  6. IAEA (1995) Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS). IAEA. Vienna, Austria: International Atomic Energy Agency; TECDOC-383

  7. Hemalatha P, Madhuparna D, Jha S, Tripathi R (2015) An investigation of 210Po distribution in marine organisms in the Mumbai Harbour Bay. J Radioanal Nucl Chem 303:271–276

    Article  CAS  Google Scholar 

  8. Carvalho F, Fernandes S, Fesenko S, Holm E, Howard B, Martin P, Phaneuf M, Porcelli D, Pröhl G, Twining J (2017) The environmental behaviour of polonium. Technical reports series no. 484. International Atomic Energy Agency, Vienna

    Google Scholar 

  9. Al-Masri MS, Mamish S, Budier Y (2003) Radionuclides and trace metals in eastern Mediterranean Sea algae. J Environ Radioactiv. 67:157–168

    Article  CAS  Google Scholar 

  10. Carvalho FP (2011) Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J Environ Radioact 102:462–472

    Article  CAS  Google Scholar 

  11. Marsico E, Ferreira M, São Clemente S, Gouvea R, Jesus E, Conti C, Junior CC, Kelecom A (2014) Distribution of Po-210 in two species of predatory marine fish from the Brazilian coast. J Environ Radioact 128:91–96

    Article  CAS  Google Scholar 

  12. Durand J, Carvalho F, Goudard F, Pieri J, Fowler S, Cotret O (1999) 210Po binding to metallothioneins and ferritin in the liver of teleost marine fish. Mar Ecol Prog Ser 177:189–196

    Article  CAS  Google Scholar 

  13. Suriyanarayanan S, Brahmanandhan G, Malathi J, Kumar SR, Masilamani V, Hameed PS, Selvasekarapandian S (2008) Studies on the distribution of 210Po and 210Pb in the ecosystem of Point Calimere Coast (Palk Strait), India. J Environ Radioact 99:766–771

    Article  CAS  Google Scholar 

  14. Koral H, Öztürk H, Hanilçi N (2009) Tectonically induced coastal uplift mechanism of Gökçeada Island, northern Aegean Sea, Turkey. Quat Int 197:43–54

    Article  Google Scholar 

  15. Ulutürk T (1987) Fish fauna, background radioactivity of the Gökçeada marine environment. Istanb Univ J Fish 1:95–119

    Google Scholar 

  16. Oliveira J, Carvalho F (2006) Sequential extraction procedure for determination of uranium, thorium, radium, lead and polonium radionuclides by alpha spectrometry in environmental samples. Czechoslov J Phys 56:545–555

    Article  Google Scholar 

  17. Borylo A, Olszewski G, Skwarzec B (2013) A study on lead (210Pb) and polonium (210Po) contamination from phosphogypsum in the environment of Wislinka (northern Poland). Environ Sci Process Impacts 15:1622–1628

    Article  CAS  Google Scholar 

  18. Carvalho F, Fernandes S, Fesenko S, Holm E, Howard B, Martin P, Phaneuf M, Porcelli D, Pröhl G, Twining J (2017) IAEA reports (technical reports series no. 484-The Environmental Behaviour of Polonium)

  19. Carvalho FP (2018) Radionuclide concentration processes in marine organisms: a comprehensive review. J Environ Radioact 186:124–130

    Article  CAS  Google Scholar 

  20. Çatal Mat E, Uğur A, Özden B, Filizok I (2012) 210Po and 210Pb variations in fish species from the Aegean Sea and the contribution of 210Po to the radiation dose. Mar Pollut Bull 64:801–806

    Article  Google Scholar 

  21. Lazorenko G, Polikarpov G, Boltachev A (2002) Natural radioelement polonium in primary ecological groups of Black Sea fishes. Russ J Mar Biol 28:52–56

    Article  CAS  Google Scholar 

  22. Skipperud L, Jørgensen A, Heier L, Salbu B, Rosseland B (2013) 210Po and 210Pb in water and fish from Taboshar uranium mining Pit Lake, Tajikistan. J Environ Radioact 123:82–89

    Article  CAS  Google Scholar 

  23. Carvalho FP, Fowler SW (1994) A double-tracer technique to determine the relative importance of water and food as sources of 210Po to marine prawns and fish. Mar Ecol Prog Ser 103:251–264

    Article  CAS  Google Scholar 

  24. Cherry R, Heyraud M (1988) Lead-210 and polonium-210 in the world’s oceans. In: Inventories of selected radionuclides in the oceans, IAEA-TECDOC-481 Vienna, ISSN 1011-4289, pp 139–158

  25. Rognerud S, Grimalt J, Rosseland B, Fernandez P, Hofer R, Lackner R, Lauritzen B, Lien L, Massabuau J, Ribes A (2002) Mercury and organochlorine contamination in brown trout (Salmo trutta) and arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago. Water Air Soil Pollut 2:209–232

    Article  CAS  Google Scholar 

  26. Walker CH, Sibly R, Hopkin S, Peakall DB (2012) Principles of ecotoxicology. CRC Press, Boca Raton

    Google Scholar 

  27. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  28. Durand J, Goudard F, Barbot C, Pieri J, Fowler S, Cotret O (2002) Ferritin and hemocyanin: 210Po molecular traps in marine fish, oyster and lobster. Mar Ecol Prog Ser 233:199–205

    Article  CAS  Google Scholar 

  29. Carvalho FP, Fowler SW (1993) An experimental study on the bioaccumulation and turnover of polonium-210 and lead-210 in marine shrimp. Mar Ecol Prog Ser 102:125–133

    Article  CAS  Google Scholar 

  30. Carvalho FP, Fowler SW, La Rosa J (1983) Assimilation, inter-organ transfer and excretion of americium in two teleost fish. Mar Biol 77:59–66

    Article  CAS  Google Scholar 

  31. Stewart GM, Fowler SW, Teyssié JL, Cotret O, Cochran JK, Fisher NS (2005) Contrasting transfer of 210Po and lead-210 across three trophic levels in marine plankton. Mar Ecol Prog Ser 290:27–33

    Article  CAS  Google Scholar 

  32. Skwarzec B, Bojanowski R (1988) 210Po content in sea water and its accumulation in southern Baltic plankton. Mar Biol 97:301–307

    Article  CAS  Google Scholar 

  33. Heyraud M, Cherry RD (1979) 210Po and 210Pb in marine food chains. Mar Biol 52:227–236

    Article  CAS  Google Scholar 

  34. Fernandes MN, Mazon ADF (2003) Environmental pollution and fish gill morphology. Fish adaptations. Science Publishers, Enfield, pp 203–231

    Google Scholar 

  35. Cherry R, Heyraud M (1981) Polonium-210 content of marine shrimp: variation with biological and environmental factors. Mar Biol 65:165–175

    Article  CAS  Google Scholar 

  36. Shannon L, Cherry R (1967) Polonium-210 in marine plankton. Nature 216:352–353

    Article  CAS  Google Scholar 

  37. Kim S, Hong G, Lee H, Cho B (2017) 210Po in the marine biota of Korean coastal waters and the effective dose from seafood consumption. J Environ Radioact 174:30–37

    Article  CAS  Google Scholar 

  38. Aoun M, El Samad O, Khozam RB, Lobinski R (2015) Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant. J Environ Radioact 140:25–29

    Article  CAS  Google Scholar 

  39. Aközcan S, Uğur A (2013) Activity levels of 210Po and 210Pb in some fish species of the Izmir Bay (Aegean Sea). Mar Pollut Bull 66:234–238

    Article  Google Scholar 

  40. Musthafa MS, Krishnamoorthy R (2012) Estimation of 210Po and 210Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India. Environ Monit Assess 184:6253–6260

    Article  CAS  Google Scholar 

  41. Uddin S, Al-Ghadban A, Behbehani M, Aba A, Al Mutairi A, Karam Q (2012) Baseline concentration of 210Po in Kuwait’s commercial fish species. Mar Pollut Bull 64:2599–2602

    Article  CAS  Google Scholar 

  42. Strok M, Smodis B (2011) Levels of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population. Chemosphere 82:970–976

    Article  CAS  Google Scholar 

  43. Hassona RK, Sam A, Osman O, Sirelkhatim D, LaRosa J (2008) Assessment of Committed Effective Dose due to consumption of Red Sea coral reef fishes collected from the local market (Sudan). Sci Total Environ 39:214–218

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by Istanbul University with the Project Number 25157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Kılıç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılıç, Ö., Belivermiş, M., Gönülal, O. et al. 210Po and 210Pb in fish from northern Aegean Sea and radiation dose to fish consumers. J Radioanal Nucl Chem 318, 1189–1199 (2018). https://doi.org/10.1007/s10967-018-6216-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6216-3

Keywords

Navigation