Skip to main content
Log in

Distribution of uranium in Japanese river waters determined with inductively coupled plasma mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uranium concentration in some selected Japanese river waters after Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was measured using inductively coupled plasma mass spectrometry (ICP-MS). We report distribution of uranium in seven prefectures of Japanese rivers covering 120 sampling points. The U concentration lies in the range of 0.13 ± 0.01–590 ± 9.93 ng L−1 with a mean value of 54.7 ± 100 ng L−1. The measured uranium content has been found to be less than the drinking waters limit of 30.0 µg L−1 recommended by the World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources, effects and risks of ionizing radiation, vol I. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  2. Chamberlain AC (1991) Radioactive aerosols. Cambridge University Press, Cambridge

  3. Smith TJ, Beresford AN (2005) Chernobyl-catastrophe and consequences. Springer, Berlin

    Google Scholar 

  4. UNEP (2002) Depleted uranium in Serbia and Montenegro-post-conflict environmental assessment in the Federal Republic of Yugoslavia. United Nations Environment Programme, Nairobi

    Google Scholar 

  5. Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident radioactivity impact on the environment. Elsevier, Boston

    Google Scholar 

  6. World Health Organization (WHO) (2004) Guidelines for drinking-water quality, 3rd edn. WHO, Geneva

    Google Scholar 

  7. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

  8. Nozaki T, Ichikawa M, Sasuga T, Inarida M (1970) Neutron activation analysis of uranium in human bone, drinking water and daily diet. J Radioanal Nucl Chem 6:33–40

    Article  CAS  Google Scholar 

  9. Tsumura A, Yamasaki S, Kihou N (1991) Radioisotopes 40:279–286 (in Japanese)

    Article  CAS  Google Scholar 

  10. Mochizuki A, Sugiyama M (2012) Natural background concentration of dissolved uranium in Japanese rivers. Jpn J Limnol 73:89–107 (in Japanese)

    Article  CAS  Google Scholar 

  11. Sakaguchi A, Kadokura A, Steier P, Tanaka K, Takahashi Y, Chiga H, Matsushima A, Nakashima S, Onda Y (2012) Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident. Geochem J 46:355–360

    Article  CAS  Google Scholar 

  12. Sonali PDB, Ajay K, Priyanka JR, Rupali K, Rajesh VK, Rajvir S, Pradeepkumar KS (2016) Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab, India. J Radioanal Nucl Chem 307:395–405

    Article  CAS  Google Scholar 

  13. Kovács T, Bodrogi E, Dombovári P, Somlai J, Cs Németh, Capote A, Tarján S (2004) 238U, 226Ra, 210Po concentrations of bottled mineral waters in Hungary and their committed effective dose. Radiat Prot Dosim 108:175–181

    Article  CAS  Google Scholar 

  14. Bajwa BS, Kumar S, Singh S, Sahoo SK, Tripathi RM (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19

    Article  CAS  Google Scholar 

  15. Burba P (1989) Photometrische Uranbestimmungen in natürlichen Wässern nach Voranreicherung an einem Cellulose-Kollektor mit Arsenazo III als funktioneller Gruppe. Fresenius Z Anal Chem 334:357–358

    Article  CAS  Google Scholar 

  16. Shiraishi K, Kimura S, Sahoo SK, Arae H (2004) Dose effect for Japanese due to 232Th and 238U in imported drinking water. Health Phys 86(4):365–373

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo SK, Matsumoto M, Shiraishi K, Fujimoto K, Cuknic O, Zunic ZS (2007) Dose effect for south Serbians due to 238U in natural drinking water. Radiat Prot Dosim 127:407–410

    Article  CAS  Google Scholar 

  18. Babu MNS, Somashekar RK, Kumar SA, Shivanna K, Krishnamurthy V, Eappen KP (2008) Concentration of uranium levels in ground water. Int J Environ Sci Technol 5:263–266

    Article  CAS  Google Scholar 

  19. Nriagu J, Nam HD, Ayanwola T, Dinh H, Erdenechimeg E, Ochir C, Bolormaa AT (2012) High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Sci Total Environ 414:722–726

    Article  CAS  PubMed  Google Scholar 

  20. Nessef MH, Diab HM (2015) Determination of uranium and thorium concentration in ground water samples by inductivity coupled plasma mass spectrometry (ICP-MS) and the associated dose contribution. Int J Environ Sci 4:7–13

    Google Scholar 

  21. Kar AS, Kumar S, Tomar BS (2012) U(VI) sorption by silica: Effect of complexing anions. Colloids Surf A Physicochem Eng Asp 395:240–247

    Article  CAS  Google Scholar 

  22. Mishra S, Sahoo SK, Arae H, Watanabe Y, Mietelski JW (2014) Activity ratio of caesium, strontium and uranium with site specific distribution coefficients in contaminated soil near vicinity of Fukushima daiichi nuclear power plant. J Chromatogr Sep Tech 5:250. https://doi.org/10.4172/2157-7064.1000250

    Article  CAS  Google Scholar 

  23. UNSCEAR (2016) Sources, effects and risks of ionizing radiation, annex D, vol I. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  24. Turtiainen T, Muikku M, Vesterbacka P, Heikkinen T (2011) Uranium and 226Ra in drinking water supplied by Finnish waterworks. Radioprotection 46:S225–S263

    Article  Google Scholar 

  25. Descamps B, Foulquier L (1988) Natural radioactivity in the principal constituents of French river ecosystems. Radiat Prot Dosim 24:143–147

    Article  CAS  Google Scholar 

  26. Gans I (1985) Natural radionuclides in mineral waters. Sci Total Environ 45:93–99

    Article  CAS  PubMed  Google Scholar 

  27. Jobbágy V, Kávási N, Somlai J, Dombovári P, Kardos R, Kovács T (2010) Radioanalytical investigations of uranium concentrations in natural spring mineral, spa and drinking waters in Hungary. J Radioanal Nucl Chem 286:417–422

    Article  CAS  Google Scholar 

  28. Singh SL, Singh H, Singh S, Bajwa BS (2009) Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India. Environ Monit Assess 154:15–22

    Article  CAS  PubMed  Google Scholar 

  29. Yoon Y, Cho SY, Lee KY, Ko KS, Ha K (2013) Radiochemical determination of uranium and radium isotope in natural water using liquid scintillation counter. J Radioanal Nucl Chem 296:397–402

    Article  CAS  Google Scholar 

  30. Banks D, Royset O, Strand T, Skarphagen H (1995) Radioelement (U, Th, Rn) concentrations in Norwegian bedrock ground waters. Environ Geol 25:165–180

    Article  CAS  Google Scholar 

  31. Cothern CR, Lappenbusch WL (1983) Occurrence of uranium in drinking water in the US. Health Phys 45:89–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SS is very much thankful to the Tokyo Metropolitan Government, Tokyo, Japan for the award from the “Asian Human Resources Fund” to support her doctoral study at Tokyo Metropolitan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somboon, S., Inoue, K., Fukushi, M. et al. Distribution of uranium in Japanese river waters determined with inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 319, 1307–1314 (2019). https://doi.org/10.1007/s10967-018-6176-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6176-7

Keywords

Navigation