Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 631–639 | Cite as

Enhancing neutron spectral results based on the combination of genetic algorithm and activation method

  • Sy Minh Tuan HoangEmail author
  • Gwang Min Sun
  • Hoai-Nam Tran
  • Ngoc-Thiem Le
  • Jiseok Kim
Article
  • 87 Downloads

Abstract

The generated neutron spectrum from KIRAMS MC-50 cyclotron has been adjusted and enhanced by the combination of the genetic algorithm (GA) and activation foil methods. The activation rates were derived from the measurements of Shieldwerx activation foil using the ORTEC HPGe spectroscopy system and applying the GA method to return the adjusted spectral information. It is worth mentioning here that the result, which was successfully validated with the unfolding spectrum from STAY’SL PNNL code, is significant as it will be a referenced neutron spectrum for the experiments of the MC-50 cyclotron.

Keywords

Neutron spectrum Activation method Genetic algorithm Unfolding spectrum STAY’SL PNNL 

Notes

Acknowledgements

This work was funded by the National Foundation for Science and Technology Development (NAFOSTED), Vietnam under Grant 103.04-2018.70.

References

  1. 1.
    Peurrung AJ (2000) Recent developments in neutron detection. Nucl Instrum Methods Phys Res A 443:400–415.  https://doi.org/10.1016/S0168-9002(99)01165-1 CrossRefGoogle Scholar
  2. 2.
    Davide C, Massimiliano N, Carlo C, Marica R, Laura A, Ezio P, Giuseppe G, Christopher DF (2018) Measurement of the neutron flux at spallation sources using multi-foil activation. Nucl Instrum Methods Phys Res A 902:14–24.  https://doi.org/10.1016/j.nima.2018.06.016 CrossRefGoogle Scholar
  3. 3.
    McElroy WN, Berg S, Crockett TB, Tuttle RJ (1969) Measurement of neutron flux spectra by a multiple foil activation iterative method and comparison with reactor physics calculations and spectrometer measurements. Nucl Sci Eng 36(1):15–27CrossRefGoogle Scholar
  4. 4.
    Cola GD, Rota A (1965) Calculation of differential fast-neutron spectra from threshold-foil activation data by least-squares series expansion methods. Nucl Sci Eng 23(4):344–353CrossRefGoogle Scholar
  5. 5.
    Esposito A, Bedigni R, Domingo C, García MJ, Amgarou K (2010) Measurements of leakage neutron spectra from a high-energy accumulation ring using Extended Range Bonner Sphere Spectrometers. Radiat Meas 45(10):1522–1525.  https://doi.org/10.1016/j.radmeas.2010.04.008 CrossRefGoogle Scholar
  6. 6.
    Gómez-Ros JM, Bedogni R, Domingo C, Eakins JS, Roberts N, Tanner RJ (2018) International comparison exercise on neutron spectra unfolding in Nonner spheres spectrometry: problem description and preliminary analysis. Radiat Prot Dosim 180:70–74.  https://doi.org/10.1093/rpd/ncy002 CrossRefGoogle Scholar
  7. 7.
    Greenwood LR, Johnson CD (2016) Least-squares neutron spectral adjustment with STAYSL PNNL. In: Proceeding of EPJ web of conferences 106. http://dx.doi.org/10.1051/epjconf/201610607001 CrossRefGoogle Scholar
  8. 8.
    Bhaskar M (1999) BONDI-97: a novel neutron energy spectrum unfolding tool using a genetic algorithm. Nucl Instrum Methods Phys Res A 432:305–312.  https://doi.org/10.1016/S0168-9002(99)00535-5 CrossRefGoogle Scholar
  9. 9.
    Shahabinejad H, Hosseini SA, Sohrabpour M (2016) A new neutron energy spectrum unfolding code using a two steps genetic algorithm. Nucl Instrum Methods Phys Res A 811:82–93.  https://doi.org/10.1016/j.nima.2015.12.028 CrossRefGoogle Scholar
  10. 10.
    Mukherjee B (2004) ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra. Radiat Prot Dosimetry 110:249–254.  https://doi.org/10.1093/rpd/nch222 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee S, Seo J, Hong J, Park SH, Lee JH, Min BW, Lee T (2015) Proton irradiation energy dependence of defect formation in graphene. Appl Surf Sci 344:52–56.  https://doi.org/10.1016/j.apsusc.2015.03.107 CrossRefGoogle Scholar
  12. 12.
    Marus LA, Engle JW, John KD, Birnbaum ER, Nortier FM (2015) Experimental and computational techniques for the analysis of proton beam propagation through a target stack. Nucl Instrum Methods Phys Res B 345:48–52.  https://doi.org/10.1016/j.nimb.2014.12.048 CrossRefGoogle Scholar
  13. 13.
    Ko G, Kim HY, Bang J, Kim J (2009) Electrical characterizations of neutron-irradiated SiC Schottky diodes. Korean J Chem Eng 26(1):285–287.  https://doi.org/10.1007/s11814-009-0049-2 CrossRefGoogle Scholar
  14. 14.
    Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105.  https://doi.org/10.1137/0202009 CrossRefGoogle Scholar
  15. 15.
    Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Comput Intell Complex.  https://doi.org/10.1007/978-3-540-73190-0 CrossRefGoogle Scholar
  16. 16.
    Wu Y (2009) CAD-based interface programs for fusion neutron transport simulation. Fusion Eng Des 84:1987–1992.  https://doi.org/10.1016/j.fusengdes.2008.12.041 CrossRefGoogle Scholar
  17. 17.
    Wu Y, Song J, Zheng Z et al (2015) CAD-based monte carlo program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168.  https://doi.org/10.1016/j.anucene.2014.08.058 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
  2. 2.Korea Atomic Energy Research Institute (KAERI)DaejeonRepublic of Korea
  3. 3.Institute for Nuclear Science and Technology - VINATOMHanoiVietnam

Personalised recommendations