Skip to main content
Log in

Statistical analysis for the confirmation of seasonal variation of radionuclides in different environmental matrices

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, 210Po and 210Pb activity was measured by using ZnS(Ag) alpha counter and using the statistical analysis to find the seasonal variation of activity concentration. The activity concentration of 210Po and 210Pb in soil and sediment of Cauvery in monsoon was measured. The seasonal variation analysis was performed using pairwise comparison test, which found that the activity concentration was higher in monsoon than pre-monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linsalata P (1994) Uranium and thorium decay series radionuclides in human and animal foodchains—a review. J Environ Qual 23:633–664

    Article  CAS  Google Scholar 

  2. Maity Sukanta, Pandit GG (2014) Estimation of Kd of lead and 210Po in 11 soils from India. J Enviorn Radioact 138:434–437

    Article  CAS  Google Scholar 

  3. Salbu Brit (2007) Speciation of radionuclides—analytical challenges within environmental impact and risk assessments. J Environ Radioact 96(1–3):47–53

    Article  CAS  Google Scholar 

  4. EML (1983) Procedure manual. Edited by Herbert L Volchok and Gail de Planque, 26th edn. Environmental Measurement Laboratory, U.S. Department of energy

  5. EML (1997) Procedure manual. Edited by Herbert L Volchok and Gail de Planque, 28th edn. Environmental Measurement Laboratory, U.S. Department of energy

  6. Kaliprasad CS, Narayana Y (2016) Distribution of 210Po in Hemavathi riverine environment. Radiat Prot Dosimetry 171(2):282–286

    Article  CAS  Google Scholar 

  7. Kaliprasad CS, Vinutha PR, Narayana Y (2018) Studies on the distribution of radionuclides and clay minerals in the soils of Cauvery river environs. J Radioanal Nucl Chem 316(2):609–617

    Article  CAS  Google Scholar 

  8. Avadhani DN, Mahesh HM, Karunakara N, Narayana Y, Somashekarappa HM, Siddappa K (2001) Dietary intake of 210Po and 210Pb in the environment of goa of south-west coast of India. Health Phys 81(4):438–445

    Article  CAS  Google Scholar 

  9. Iyengar MAR (1983) Studies on the distribution of natural radioactivity in marine organisms. Ph.D., Thesis, University of Bombay, India

  10. Narayana Y, Rajashekara KM (2010) The importance of physico-chemical parameters on the speciation of natural radionuclides in riverine ecosystems. J Environ Radioact 101:958–964

    Article  CAS  Google Scholar 

  11. Prakash MM, Kaliprasad CS, Narayana Y (2017) Distribution of 210Po in soils of Virajpet taluk, Coorg District, Karnataka. J Radiat Res Appl Sci 10(1):57–62

    Article  CAS  Google Scholar 

  12. Kaliprasad CS, Narayana Y (2016) Speciation and behavior of 210Po and 210Pb in the riverine ecosystem of Cauvery, a major river of south India. Radiochemistry 58(4):431–437

    Article  CAS  Google Scholar 

  13. Kaliprasad CS, Narayana Y (2018) Seasonal variation and behavior of 210Pb in the soil and sediment of Hemavathi Riverine environment. MOJ Toxicol 4(2):85–91

    Google Scholar 

  14. Prakash V (2007) Enrichment of 210Po and 210Pb in the Padubidri environs of Karnataka. Int J Nucl Energy Sci Technol. https://doi.org/10.1504/IJNEST.2007.017078

    Article  Google Scholar 

  15. Iyengar MAR, Ganapathy S, Kannan V, Rajan MP, Rajaram S (1990) Procedure manual. In: Workhshop on environmental radioactivity. Kaiga, India

  16. Rajashekara KM, Narayana Y, Siddappa K (2008) Distribution of 210Po and 210Pb in riverine environs of Costal Karnataka. J Radioanal Nucl Chem 277(2):379–388

    Article  CAS  Google Scholar 

  17. D’Cunha Primal, Sathyanarayana Bhat P, Narayana Y (2011) A study on 210Po activity concentration in soil at different depths along coastal Kerala. J Radioanal Nucl Chem 290:171–174

    Article  Google Scholar 

  18. Bhat Rajeev, Sridhar Kandikere R, Tomita-Yokotani K (2007) Effect of ionizing radiation on antinutritional features of velvet bean seeds. Food Chem 103(3):860–866

    Article  CAS  Google Scholar 

  19. Salkind NJ (2010) Encyclopedia of research design. https://doi.org/10.4135/9781412961288.n298

  20. Bossew P, Strebl F (2001) Radioactive contamination of tropical rainforest soils in Southern Costa Rica. J Environ Radioact 53(2):199–213

    Article  CAS  Google Scholar 

  21. Kaliprasad CS (2017) Studies on transport and distribution of radionulcides in the major river ecosystem of south Karnataka. Ph.D., Thesis, Mangalore University

  22. Narayana Y, Shetty PK, Siddappa K (2006) Behavior of 210Po and 210Pb in high background areas of coastal Kerala on the south west coast of India. Appl Radiat Isot 64(3):396–401

    Article  CAS  Google Scholar 

  23. Descamps B, Foulquier L (1988) Natural radioactivity in the principal constituents of French river eco-systems. Radiat Prot Dosimetry 24:143–147

    Article  CAS  Google Scholar 

  24. Narayana Y, Prakash V (2010) Enrichment and vertical profiles of 210Po and 210Pb in monazite area of Coastal Karnataka. Appl Radiat Isot 68:1137–1142

    Article  CAS  Google Scholar 

  25. Muhammad BG, Jaafar MS, Rahman AA, Ingawa FA (2012) Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in northern peninsular Malaysia. Environ Monit Assess 184:5043–5049

    Article  CAS  Google Scholar 

  26. Avadhani DN, Mahesh HM, Karunakara N, Somashekarappa HM, Narayana Y, Siddappa K (2001) Distribution and behaviour of 210Po and 210Pb in soil samples of Goa, South west coast of India. Radiat Prot Environ 24(1–2):401–405

    Google Scholar 

  27. Schuttelkopf H, Kiefer H (1982) The Radium-226 and Polonium-210 concentration of the Black Forest, Natural Radiation Environment (Proc. 2nd Special Symp. Bombay, Vohra KG, Mishra UC, Pillai KC, Sadasivan S, eds). Wiley Eastern Ltd., New Delhi, pp 194–200

  28. Salahel Din K, Vesterbacka P (2012) Radioactivity levels in some sediment samples from Red Sea and Baltic Sea. Radiat Prot Dosimetry 148(1):101–106

    Article  CAS  Google Scholar 

  29. Radhakrishna AP, Somasekarapa HM, Narayana Y, Siddappa K (1993) A new natural background radiation area on the southwest coast of India. Health Phys 65:390–395

    Article  CAS  Google Scholar 

  30. Santos PL, Gouvea RC, Dutta IR, Gouvea VA (1990) Accumulation of Po-210 in foodstuffs cultivated in farms around the Brazilian mining and milling facilities on Pocos de Caldas Plateau. J Environ Radioact 11:141–149

    Article  CAS  Google Scholar 

  31. Prakash MM, Kaliprasad CS, Narayana Y (2018) Study of 210Pb in the illuviated soils of Virajpet taluk, Coorg District, Karnataka state. J Radioanal Nucl Chem 315(2):315–322

    Article  CAS  Google Scholar 

  32. Adams AMA, Eltayeb MAH (2012) Multivarite statistical analysis pd radioactive variables in two phosphate ores from sudan. J Environ Radioact 107:23–43

    Article  Google Scholar 

  33. Prakash MM, Kaliprasad CS, Narayana Y (2017) Studies on natural radioactivity in rocks of Coorg district, Karnataka state, India. J Radiat Res Appl Sci 10(1):57–62

    Article  CAS  Google Scholar 

  34. Manigandan PK, Chandar Shekar B, Khanna D (2015) Root uptake/foliar uptake in a natural ecosystem. Springer Nature, Berlin

    Book  Google Scholar 

  35. Ghasemi Asghar, Zahediasl Saleh (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10(2):486–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Kaliprasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliprasad, C.S., Narayana, Y. Statistical analysis for the confirmation of seasonal variation of radionuclides in different environmental matrices. J Radioanal Nucl Chem 318, 1181–1187 (2018). https://doi.org/10.1007/s10967-018-6152-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6152-2

Keywords

Navigation