Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 279–285 | Cite as

The production of Ar-37 using a thermal neutron reactor flux

  • D. G. Kelly
  • Q. Arnaud
  • A. E. Brossard
  • E. C. Corcoran
  • D. Durnford
  • G. Gerbier
  • A. Faurschou
  • J. M. McDonald
  • T. Mumby
  • P. Samuleev
Article
  • 84 Downloads

Abstract

Ar-37 has been prepared from micron- and nano- diameter CaO by irradiation in the predominantly thermal flux of a SLOWPOKE-2 reactor. A polyether ether ketone irradiation vial facilitates irradiation in vacuo to yield radio-argon as the sole gaseous product. Gamma-emitting Ar-41(T1/2 = 110 min) is used to infer Ar-37 activity, although 40Ar(n, γ)41Ar also occurs as a result of air entrapped within the CaO matrix. Less air is present in the nano-CaO matrix and more radio-argon is liberated to the gas phase. Using nano-CaO, 96 ± 10% of predicted Ar-41 is observed following Ar-41 diffusion to an un-irradiated container.

Keywords

Isotope production Argon-37 Thermal neutrons SLOWPOKE-2 Nanoparticle 

Notes

Acknowledgements

The authors thank the technical staff at the Royal Military College and Queen’s University for their assistance. Also, the authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), through Grant No. 385857-2010 RGPIN.

References

  1. 1.
    Larkins FB (1977) At Data Nucl Data Tables 20:311–387CrossRefGoogle Scholar
  2. 2.
    Carrigan CR, Sun Y (2017) LLNL-TR-739079Google Scholar
  3. 3.
    Williams RM, Aalseth CE, Bowyer TW, Day AR, Fuller ES, Haas DA, Hayes JC, Hoppe EW, Humble PH, Keillor ME, LaFerriere BD, Mace EK, McIntyre JI, Miley HS, Myers AW, Orrell JL, Overman CT, Panisko ME, Seifert A (2016) Appl Radiat Isot 109:430–434CrossRefPubMedGoogle Scholar
  4. 4.
    Haas DA, Miley HS, Orrell JL, Aalseth CE, Bowyer TW, Hayes JC, McIntyre JI (2010) PNNL-19458Google Scholar
  5. 5.
    Barsanov VI, Dzhanelidze AA, Zamyatina AA, Zlokazov SB, Korenkova AV, Kotel’nikov NA, Markov SYu, Selin VV, Shalirov ZN, Abdurashitov DN, Veretenkin EP, Gavrin VN, Mirmov IN, Yantz VE (2006) Instrum Exp Tech 49:454–460CrossRefGoogle Scholar
  6. 6.
    Riedmann RA, Purtschert R (2011) Env Sci Technol 45:8656–8664CrossRefGoogle Scholar
  7. 7.
    Egnatuk CM, Lowrey J, Biegalski SR, Bowyer T, Haas D, Orrell J, Woods V, Keillor M (2012) J Radioanal Nucl Chem 291:257–260CrossRefGoogle Scholar
  8. 8.
    Barsanov VI, Dzhanelidze AA, Zlokazov SB, Kotelnikov NA, Markov SYu, Selin VV, Shalirov ZN, Abdurashitov DN, Veretenkin EP, Gavrin VN, Gorbachev VV, Ibragimov TV, Kalikhov AV, Mirmov IN, Shikhin AA, Yantz VE, Khomyakov YuS, Cleveland BT (2007) Phys At Nucl 70:300–310CrossRefGoogle Scholar
  9. 9.
    Sangiorgio S, Joshiad TH, Bernsteina A, Coleman J, Fox M, Hagmann C, Jovanovic I, Kazkaza K, Mavrokoridis K, Mozin V, Pereverzev S, Sorensen P (2013) Nucl Instrum Methods Phys Res A 728:69–72CrossRefGoogle Scholar
  10. 10.
    Akimov DYu, Afanasyev VV, Alexandrov IS, Belov VA, Bolozdynya Burenkov AA, Efremenko YuV, Egorov DA, Etenko AV, Gulin MA, Ivakhin SV, Kaplin VA, Karelin AK, Khromov AV, Kirsanov MA, Klimanov SG, Kobyakin AS, Konovalov AM, Kovalenko AG, Kuchenkov AV, Kumpan AV, Melikyan YuA, Nikolaev RI, Rudik DG, Sosnovtsev VV, Stekhanova VN (2014) J Instrum 9:11014CrossRefGoogle Scholar
  11. 11.
    Egnatuk CM, Biegalski SR (2013) J Radioanal Nucl Chem 298:475–479CrossRefGoogle Scholar
  12. 12.
    Aalseth CE, Day AR, Haas DA, Hoppe EW, Hyronimus BJ, Keillor ME, Mace EK, Orrell JL, Seifert A, Woods VT (2011) Nucl Instrum Methods Phys Res A 652:58–61CrossRefGoogle Scholar
  13. 13.
    News-g.org. Accessed on 10 April 2018Google Scholar
  14. 14.
    Arnaud Q, Asner D, Bard J-P, Brossard A, Caia B, Chapellier M, Clark M, Corcoran EC, Dandl T, Dastgheibi-Fard A, Dering K, Di Stefano P, Durnford D, Gerbier G, Giomataris I, Gorel P, Gros M, Guillaudin O, Hoppe EW, Kamaha A, Katsioulas I, Kelly DG, Martin RD, McDonald J, Muraz J-F, Mols J-P, Navick X-F, Papaevangelou T, Piquemal F, Rotha S, Santos D, Savvidis I, Ulrich A, Vazquez de Sola Fernandez F, Zampaolo M (2018) Astropart Phys 97:54–62CrossRefGoogle Scholar
  15. 15.
    Atfield J (2012) MCNP SLOWPOKE-II model. Canadian Nuclear LaboratoriesGoogle Scholar
  16. 16.
    Kennedy G, St-Pierre J, Wang K, Zhang Y, Preston J, Grant C, Vutchkov M (2000) J Radioanal Nucl Chem 245:167–172CrossRefGoogle Scholar
  17. 17.
    Acharya R, Chatt A (2003) J Radioanal Nucl Chem 257:525–529CrossRefGoogle Scholar
  18. 18.
    Ravn HL, Catherall R, Barker J, Drumm P, Evensen AHM, Hegebo E, Hoff P, Jonsson OC, Kugler E, Lettry J, Steffensen K, Tengblad O (1997) Nucl Instrum Methods Phys Res B 126:176–181CrossRefGoogle Scholar
  19. 19.
    Ramos JP, Gottberg A, Mendonca TM, Seiffert C, Senos AMR, Fynbo HOU, Tengblad O, Briz JA, Lund MV, Koldste GT, Carmona-Gallardo M, Pesudo V, Stora T (2014) Nucl Instrum Methods Phys Res B 320:83–88CrossRefGoogle Scholar
  20. 20.
    Wong LL, Bradt RC (1995) J Am Ceram Soc 77:1611–1616CrossRefGoogle Scholar

Copyright information

© Crown  2018

Authors and Affiliations

  • D. G. Kelly
    • 1
  • Q. Arnaud
    • 2
  • A. E. Brossard
    • 2
  • E. C. Corcoran
    • 1
  • D. Durnford
    • 2
  • G. Gerbier
    • 2
  • A. Faurschou
    • 2
  • J. M. McDonald
    • 2
  • T. Mumby
    • 1
  • P. Samuleev
    • 1
  1. 1.Department of Chemistry and Chemical EngineeringRoyal Military College of CanadaKingstonCanada
  2. 2.Department of Physics, Engineering Physics and AstronomyQueen’s UniversityKingstonCanada

Personalised recommendations