Skip to main content
Log in

Spatial distribution of 7Be and 137Cs measured with the use of biomonitors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An attempt to establish a spatial distribution of the atmospheric deposition of the 7Be was done using terrestrial mosses as medium. The levels of naturally present radionuclide 7Be (and 40K, 137Cs, 212Pb and 214Bi as well) were measured in 217 moss samples collected from the entire territory of the Republic of Serbia. Measurements were performed by a well-type NaI detector. Measurable values of activity concentrations of 7Be (up to the 666 Bq kg−1) were detected in all moss samples. The measured minimal and maximal activity concentration values of 7Be were found to differ ninefold. It is much higher than the difference between minimal and maximal 7Be activity measured in surface air measured in 34 stations in EU. It was obtained that the spatial distribution of 7Be is non-uniform shoving small isolated islands having significantly higher (or lower) activity concentrations than neighboring area. Prominent local differences in activity concentration cannot be observed in spatial distribution of 137Cs which was exposed to different environmental influences after deposition during three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vecchi R, Valli G (1997) 7Be in surface air: a natural atmospheric tracer. J Aerosol Sci 28(5):895–900

    Article  CAS  Google Scholar 

  2. Aldahan A, Possnert G, Vintersved I (2001) Atmospheric interactions at northern high-latitudes from weekly Be-isotopes in surface air. Appl Radiat Isot 54:345–353

    Article  CAS  Google Scholar 

  3. Kaste JM, Norton SA, Hess C (2002) Environmental chemistry of 7Be. Rev Mineral Geochem 50:271–289

    Article  CAS  Google Scholar 

  4. Papastefanou C, Ioannidou A (2004) Beryllium-7 and solar activity. Appl Radiat Isot 61:1493–1495

    Article  CAS  Google Scholar 

  5. IAEA Technical Report Series No. 472 (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA, Vienna

  6. Walling DE, He Q, Blake W (1999) Use of 7Be and 137Cs measurements to document short- and medium-term rates of water-induced soil erosion on agricultural land. Water Resour Res 35:3865–3874

    Article  Google Scholar 

  7. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807

    Article  CAS  Google Scholar 

  8. Lal D, Malhotra PK, Peters B (1958) On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J Atmos Terr Phys 12:306–328

    Article  Google Scholar 

  9. Papastefanou C, Ioannidou A (1995) Aerodynamic size association of Be-7 in ambient aerosols. J Environ Radioact 26:273–282

    Article  CAS  Google Scholar 

  10. Koch DM, Jacob DL, Graustein WC (1996) Vertical transport of troposphere aerosols as indicated by 7Be and 210Pb in a chemical tracer model. J Geophys Res 101:18651–18666

    Article  CAS  Google Scholar 

  11. Guebuem K, Hussain N, Scudlark JR, Church TM (2000) Factors influencing the atmospheric depositional fluxes of stable Pb, 210Pb, and 7Be into Chesapeake Bay. J Atmos Chem 36:65–79

    Article  Google Scholar 

  12. Caillet S, Arpagaus P, Monna F, Dominik J (2001) Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. J Environ Radioact 53:241–256

    Article  CAS  Google Scholar 

  13. Tositti L, Brattich E, Cinelli G, Baldacci D (2014) 12 years of 7Be and 210Pb in Mt. Cimone, and their correlation with meteorological parameters. Atmos Environ 87:108–122

    Article  CAS  Google Scholar 

  14. Schuller P, Walling DE, Iroumé A, Castillo A (2010) Use of beryllium-7 to study the effectiveness of woody trash barriers in reducing sediment delivery to streams after forest clearcutting. Soil Tillage Res 110:143–153

    Article  Google Scholar 

  15. Pinto MV, Pires LF, Santos Bacchi OO, Robinson Clayton JA, Bruno IP, Reichardt K (2013) Spatial variability of 7Be fallout for erosion evaluation. Radiat Phys Chem 83:1–7

    Article  CAS  Google Scholar 

  16. Hernandez-Ceballos MA, Cineli G, Marin Ferrer M, Tolefsen T, De Felice L, Nweke E, Tognoli PV, Vanzo S, De Cort M (2015) A climatology of 7Be in surface air in European Union. J Environ Radioact 141:62–70

    Article  CAS  Google Scholar 

  17. Rühling A, Tyler G (1973) Heavy metal deposition in Skandinavia. Water Air Soil Pollut 2:445–455

    Article  Google Scholar 

  18. Buse A, Norris D, Harmens H, Büker P, Ashenden T, Mills G (2003) Heavy metals in European mosses: 2000/2001 survey. UNECE ICP Vegetation, Bangor

    Google Scholar 

  19. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blumf O, Coskun M, Damh M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueom L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Mankovská B, Peschw R, Rühling A, Santamariam JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  Google Scholar 

  20. Godoy JM, Schuch LA, Nordemann DJR, Reis VRG, Ramalho M, Reico JC, Brito RRA, Olech MA (1998) 137Cs, 226,228Ra,210Pb and 40K concentrations in Antarctic soil, sediment and selected moss and lichen samples. J Environ Radioact 41:33–45

    Article  CAS  Google Scholar 

  21. Delfanti R, Papucci C, Benco C (1999) Mosses as indicators of radioactivity deposition around a coal-fired power station. Sci Total Environ 227:49–56

    Article  CAS  Google Scholar 

  22. Dowdall M, Gwynn JP, Moran C, O‘dea J, Davids C, Lind B (2005) Uptake of radionuclides by vegetation at high Arctic location. Environ Pollut 133:327–332

    Article  CAS  Google Scholar 

  23. Krmar M, Radnović D, Rakić S, Matavuly M (2007) Possible use of terrestrial mosses in detection of atmospheric deposition of 7Be over large areas. J Environ Radioact 95:53–61

    Article  CAS  Google Scholar 

  24. Krmar M, Mihailović D, Arsenić I, Radnović D, Pap I (2016) Beryllium-7 and 210Pb atmospheric deposition measured in moss and dependence on cumulative precipitation. Sci Total Environ 541:941–948

    Article  CAS  Google Scholar 

  25. Hansman J, Mrdja D, Slivka J, Krmar M (2015) Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation. Appl Radiat Isot 99:150–154

    Article  CAS  Google Scholar 

  26. Krmar M, Radnović D, Mihailović DT, Lalić B, Slivka J, Bikit I (2009) Temporal variations of 7Be, 210 Pb and 137Cs in moss samples over 14 month period. Appl Radiat Isot 67:1139–1147

    Article  CAS  Google Scholar 

  27. Rahn KA, Huang S (1999) A graphical technique for distinguishing soil and atmospheric deposition in biomonitors from the plant material. Sci Total Environ 232:79–104

    Article  CAS  Google Scholar 

  28. Bikit I, Slivka J, Conkić L, Krmar M, Vesković M, Žikić-Todorović N, Varga E, Ćurčić S, Mrdja D (2004) Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro). J Environ Radioact 78:11–19

    Article  Google Scholar 

  29. Krmar M, Varga E, Slivka J (2013) Correlations of natural radionuclides in soil with those in sediment from the Danube and nearby irrigation channels. J Environ Radioact 117:31–35

    Article  CAS  Google Scholar 

  30. Nikolov J, Todorović N, Pantić TP, Forkapić S, Mrdja D, Bikit I, Krmar M, Vesković M (2012) Exposure to radon in the radon spa Niška Banja, Serbia. Radiat Meas 47:443–450

    Article  CAS  Google Scholar 

  31. IAEA (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’. Radiological assessment reports series. IAEA, Viena

  32. Ioannidou A, Papastefanou C (2006) Precipitation scavenging of 7Be and 137Cs radionuclides in air. J Environ Radioact 85:121–136

    Article  CAS  Google Scholar 

  33. Gaare E, Steinnes E (1996) Use of the moss Hylocomium splendens for the mapping of radiocaesium fallout from the atmosphere. In: Walderhaug T, Guðlaugsson EP (eds) Proceedings of Nordisk Selskap For Strålevern, det 11. Ordinære motet, Det. 7. Nordiske Radioøkologi Seminar, Reykjavík, Ísland, pp 367–370

  34. Krmar M, Radnović D, Hansman J, Repić P (2017) Influence of broadleaf forest vegetation on atmospheric deposition of airborne radionuclides. J Environ Radioact 177:32–36

    Article  CAS  Google Scholar 

  35. Kulan A, Aldahan A, Possnert G, Vintersved I (2006) Distribution of 7Be in surface air of Europe. Atmos Environ 40:3855–3868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of the projects “Studying climate change and its influence on the environment: impacts, adaptation and mitigation” (43007) and “Biosensing Technologies and Global System for Long-Term Research and Integrated Management of Ecosystems” (No. 43002) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag Krmar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krmar, M., Radnović, D., Hansman, J. et al. Spatial distribution of 7Be and 137Cs measured with the use of biomonitors. J Radioanal Nucl Chem 318, 1845–1854 (2018). https://doi.org/10.1007/s10967-018-6121-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6121-9

Keywords

Navigation