Skip to main content
Log in

A simple synthesis of magnetic ammonium 12-molybdophosphate/graphene oxide nanocomposites for rapid separation of Cs+ from water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new nanoadsorbent A/Fe3O4/GO (AFG) is developed for eliminating Cs+ from water by anchoring Fe3O4 nanoparticles onto graphene oxide (GO/Fe3O4) and in situ controllable growing nanocrystal of ammonium 12-molybdophosphate (A) on the surface of GO/Fe3O4 with a simple procedure at room temperature. AFG shows a high adsorption capacity for Cs+ (Qmax = 82.71 mg g−1) and fast kinetics (> 88.83% elimination efficiency within only 1 min and reaches the end equilibrium in about 10 min). It presents good selectivity for Cs+ in a wide pH range (2.0–10). Furthermore, it can be recovered from water with easily magnetic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Radionuclides (2016) US Environmental Protection Agency. https://www.epa.gov/radiation/radionuclides. 14 Sept 2016

  2. Ding D, Zhang Z, Lei Z, Yang Y, Cai T (2016) Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environ Sci Pollut R 23:2249–2263

    Article  CAS  Google Scholar 

  3. Nuclear Waste: Amounts and On-Site Storage (2011) Nuclear Energy Institute, Washington, DC. http://www.nei.org/resourcesandstats/nuclear-statistics/nuclearwasteamountsandonsitestorage

  4. Naulier M, Eyrolle-Boyer F, Boyer P, Métivier J, Onda Y (2017) Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesiums. Sci Total Environ 579:1560–1571

    Article  CAS  Google Scholar 

  5. Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:308–319

    Article  CAS  Google Scholar 

  6. Datta SJ, Moon WK, Choi DY, Hwang IC, Yoon KB (2014) A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angew Chem Int Ed 53:1–7

    Article  Google Scholar 

  7. Brown J, Hammond DL, Wilkins BT (2008) Handbook for assessing the impact of a radiological incident on levels of radioactivity in drinking water and risks to operatives at water treatment works: supporting scientific report. Health Protection Agency (UK), Radiation Protection Division

  8. Lai YC, Chang YR, Chen ML, Lo YK, Lai JY, Lee DJ (2016) Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour Technol 214:192–198

    Article  CAS  Google Scholar 

  9. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  10. Lee KY, Kim KW, Park M, Kim J, Oh M, Lee EH, Chung DY, Moon JK (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res 95:134–141

    Article  CAS  Google Scholar 

  11. Joshua LM, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG (2013) Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3−xS6 (x = 0.5–1) (KMS-2) relevant to nuclear waste remediation. Chem Mater 25:2116–2127

    Article  Google Scholar 

  12. Sarina S, Bo A, Liu DJ, Liu HW, Yang DJ, Zhou CF, Maes N, Komarneni S, Zhu HY (2014) Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents. Chem Mater 26:4788–4795

    Article  CAS  Google Scholar 

  13. Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959

    Article  CAS  Google Scholar 

  14. Wang S, Alekseev EV, Ling J, Skanthakumar S, Soderholm L, Depmeier W, Albrecht-Schmitt TE (2010) Neptunium diverges sharply from uranium and plutonium in crystalline borate matrixes: insights into the complex behavior of the early actinides relevant to nuclear waste storage. Angew Chem Int Ed 49:1263–1266

    Article  CAS  Google Scholar 

  15. Jang J, Lee DS (2016) Magnetic Prussian Blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55:3852–3860

    Article  CAS  Google Scholar 

  16. Wang XW, Chu LY, Aguila B, Banerjee D, Nie Z, Shin Y, Ma SQ, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52:5940–5942

    Article  Google Scholar 

  17. Yang DJ, Sarina S, Zhu HY, Liu HW, Zheng ZF, Xie MX, Smith SV, Komarneni S (2011) Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed 50:10594–10598

    Article  CAS  Google Scholar 

  18. Oleksiienko O, Levchuk I, Sitarz M, Meleshevych S, Strelko V, Sillanpää M (2015) Adsorption of caesium (Cs+) from aqueous solution by porous titanosilicate xerogels. Desalination Water Treat 1:1–13

    Google Scholar 

  19. Ding N, Kanatzidis MG (2010) Selective incarceration of caesium ions by venus flytrap action of a flexible framework sulfide. Nat Chem 2:187–191

    Article  CAS  Google Scholar 

  20. Manos MJ, Kanatzidis MG (2009) Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3−xS6 (KMS-1). J Am Chem Soc 131:6599–6607

    Article  CAS  Google Scholar 

  21. Chang L, Chang SQ, Chen W, Han W, Li Z, Zhang Z, Dai Y, Chen D (2016) Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal. RSC Adv 6:96223–96228

    Article  CAS  Google Scholar 

  22. Yang HJ, Sun L, Zhai JL, Li HY, Zhao Y, Yu HW (2014) In situ controllable synthesis of magnetic Prussian Blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2:326–332

    Article  CAS  Google Scholar 

  23. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  Google Scholar 

  24. Jang J, Miran W, Lee DS (2018) Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution. J Radioanal Nucl Chem 316:691–701

    Article  CAS  Google Scholar 

  25. Ding DH, Zhao YX, Yang SJ, Shi WS, Zhang ZY, Lei ZF, Yang YN (2013) Adsorption of cesium from aqueous solution using agricultural residue-Walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571

    Article  CAS  Google Scholar 

  26. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent-Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  CAS  Google Scholar 

  27. Ding DH, Lei ZF, Yang YN, Feng CP, Zhang ZY (2014) Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate(III) functionalized agricultural residue–walnut shell. J Hazard Mater 270:187–195

    Article  CAS  Google Scholar 

  28. El-Zahhar AA (2013) Sorption of cesium from aqueous solutions using polymer supported bentonite. J Radioanal Nucl Chem 295:1693–1701

    Article  CAS  Google Scholar 

  29. Abdel-Karim AM, Zaki AA, Elwan W, El-Naggar MR, Gouda MM (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci 132–133:391–401

    Article  Google Scholar 

  30. Kumar V, Sharma JN, Achuthan PV, Hubli RC (2013) Selective separation of cesium from simulated high level liquid waste solution using 1,3-dioctyloxy calix[4]arene-benzo-crown-6. J Radioanal Nucl Chem 299:1547–1553

    Article  Google Scholar 

  31. Lee HK, Choi JW, Oh W, Choi SJ (2016) Sorption of cesium ions from aqueous solutions by multi-walled carbon nanotubes functionalized with copper ferrocyanide. J Radioanal Nucl Chem 309:477–484

    CAS  Google Scholar 

  32. Tan Z, Huang Z, Zhang D, Wang X (2014) Structural characterization of ammonium molybdophosphate with different amount of cesium adsorption. J Radioanal Nucl Chem 299:1165–1169

    Article  CAS  Google Scholar 

  33. Yu L, Guo WP, Sun M, He J (2013) Process analysis of Rb+ and Cs+ adsorption from salt lake brine by ammonium molybdophosphate composite material. Adv Mater Res 785–786:812–816

    Google Scholar 

  34. Yu W, He J, Lin W, Li Y, Men W, Wang F, Huang J (2015) Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific. J Environ Radioact 142:54–61

    Article  CAS  Google Scholar 

  35. Wells AF (1975) Structural inorganic chemistry. J Chem Educ 4:436–437

    Google Scholar 

  36. Smit JVR (1958) Ammonium salts of the heteropolyacids as cation exchangers. Nature 181:1530–1531

    Article  CAS  Google Scholar 

  37. Vincent C, Barré Y, Vincent T, Taulemesse J, Robitzer M, Guibal E (2015) Chitin-Prussian blue sponges for Cs(I) recovery: from synthesis to application in the treatment of accidental dumping of metal-bearing solutions. J Hazard Mater 287:171–179

    Article  CAS  Google Scholar 

  38. Yang HJ, Li HY, Zhai JL, Sun L, Yu HW (2014) Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite. Ind Eng Chem Res 53:17878–17883

    Article  CAS  Google Scholar 

  39. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  40. Calderone VR, Shiju NR, Curulla-Ferré D, Chambrey S, Khodakov A, Rose A, Thiessen J, Jess A, Rothenberg G (2013) De novo design of nanostructured Iron-Cobalt Fischer–Tropsch catalysts. Angew Chem Int Ed 52:4397–4401

    Article  CAS  Google Scholar 

  41. Jang J, Lee DS (2016) Magnetic Prussian Blue nanocomposites for effective cesium removal from aqueous solution. Ind Eng Chem Res 55:3852–3860

    Article  CAS  Google Scholar 

  42. Kobayashi T, Ohshiro M, Nakamoto K, Uchida S (2016) Decontamination of extra-diluted radioactive cesium in Fukushima water using zeolite–polymer composite fibers. Ind Eng Chem Res 55:6996–7002

    Article  CAS  Google Scholar 

  43. Manos MJ, Ding N, Kanatzidis MG (2008) Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proc Natl Acad Sci USA 105:3696–3699

    Article  CAS  Google Scholar 

  44. Crouthamel CE, Johnson CE (1954) Thiocyanate spectrophotometric determination of molybdenum and tungsten. Anal Chem 26(8):1284–1291

    Article  CAS  Google Scholar 

  45. Zaman I, Kuan HC, Meng Q, Michelmore A, Kawashima N, Pitt T, Zhang L, Gouda S, Luong L, Ma J (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22:2735–2743

    Article  CAS  Google Scholar 

  46. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  47. Rocchiccioli-Deltcheff C, Foufnier M, Franck R, Thouvenot R (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  48. Huang YJ, Liu S, Yang WJ (2015) Large particle ammonium molybdophosphate: preparation and crystallization kinetics. Chin J Inorg Chem 31:789–797

    CAS  Google Scholar 

  49. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168

    Article  CAS  Google Scholar 

  50. Dermeche L, Thouvenot R, Hocine S, Rabia C (2009) Preparation and characterization of mixed ammonium salts of Keggin phosphomolybdate. Inorg Chim Acta 362:3896–3900

    Article  CAS  Google Scholar 

  51. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, James MT (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  52. Chandra V, Park J, Chun Y, Lee JW, Hwang I, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  53. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2012) Evaluation of AMP-PAN composite for adsorption of Cs+ ions from aqueous solution using batch and fixed bed operations. J Radioanal Nucl Chem 292:609–617

    Article  CAS  Google Scholar 

  54. Langmuir I (1918) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  55. Freundlich HMF (1906) Über die adsorption in Lösungen. Z Phys Chem 57A:385–470

    Google Scholar 

  56. Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv 2:5707–5716

    Article  CAS  Google Scholar 

  57. Saha S, Singhal RK, Basu H, Pimple MV (2016) Ammonium molybdate phosphate functionalized silicon dioxide impregnated in calcium alginate for highly efficient removal of 137Cs from aquatic bodies. RSC Adv 6:95620–95627

    Article  CAS  Google Scholar 

  58. Shibata T, Seko N, Amada H, Kasai N, Saiki S, Hoshina H, Ueki Y (2016) Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate. Radiat Phys Chem 119:247–252

    Article  CAS  Google Scholar 

  59. Deng H, Li YX, Huang Y, Ma X, Wu L, Cheng TH (2016) An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem Eng J 286:25–35

    Article  CAS  Google Scholar 

  60. Dwivedi C, Pathak SK, Kumar M, Tripathi SC, Bajaj PN (2015) Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions. Environ Sci Water Res Technol 1:153–160

    Article  CAS  Google Scholar 

  61. Wang XW, Chu LY, Aguila B, Banerjee D, Nie Z, Shin Y, Ma SQ, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52:5940–5942

    Article  Google Scholar 

  62. Sarma D, Malliakas CD, Subrahmanyam KS, Islam SM, Kanatzidis MG (2016) K2xSn4−xS8−x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO2 2+ ions. Chem Sci 7:1121–1132

    Article  CAS  Google Scholar 

  63. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2017YFC0505904), National Natural Science Foundation of China (No. 21507006), Scientific R&D Projects of Colleges and Universities in Shandong Province (J15LD51), Scientific Research Start-up Funds for Doctor’s Degree of Binzhou University (2015Y11, 2014Y04) and Binzhou University research project (BZXYSYXM201616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yu, H., Cui, Q. et al. A simple synthesis of magnetic ammonium 12-molybdophosphate/graphene oxide nanocomposites for rapid separation of Cs+ from water. J Radioanal Nucl Chem 318, 955–966 (2018). https://doi.org/10.1007/s10967-018-6120-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6120-x

Keywords

Navigation