Measurement of the excitation function of 96Zr(α,n)99Mo for an alternative production source of medical radioisotopes


To assess the feasibility of an innovative medical 99Mo/99mTc production route using a low-energy accelerator, we measured the excitation function of the 96Zr(α,n)99Mo reaction in the energy range from 11 to 23 MeV using a 24 MeV α beam. The present results showed higher values than past data in the peak region, although both data were almost identical above 17 MeV. The production rate of 99Mo from a 96Zr target with incident energies of α particles below 23 MeV was also estimated using the measured excitation function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Pillai MRA, Dash A, Knapp FF (2013) J Nucl Med 54:313–323

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Van Noorden R (2013) Nature 504(7479):202–204

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Nagai Y, Hashimoto K, Hatukawa Y, Saeki H, Motoishi S, Sato N, Kawabata M, Harada H, Kin T, Tsukada K, Sato KT, Minato F, Iwamoto O, Iwamoto N, Seki Y, Yokoyama K, Shiina T, Ohta A, Takeuchi N, Kawauchi Y, Sato N, Yamabayashi H, Adachi Y, Kikuchi Y, Mitsumoto T, Igarashi T (2013) J Phys Soc Jpn. 82:064201-1–064201-7

  4. 4.

    Sekimoto S, Tatenuma K, Suzuki Y, Tsuguchi A, Tanaka A, Tadokoro T, Kani Y, Morikawa Y, Yamamoto A, Ohtsuki T (2017) J Radioanal Nucl Chem 311(2):1361–1366

    CAS  Article  Google Scholar 

  5. 5.

    Rosenthal GB, Lewin HC (2014) Production of 99Mo using high-current alpha beams. In: NNSA’s 2014 Mo-99 topical meeting, 24–27 June 2014, Washington D.C.

  6. 6.

    Pupillo G, Esposito J, Gambaccini M, Haddad F, Michel N (2014) J Radioanal Nucl Chem 302(2):911–917

    CAS  Article  Google Scholar 

  7. 7.

    Chowdhury DP, Pal S, Saha SK, Gangadharan S (1995) Nucl Instrum Meth B. 103(3):261–266

    CAS  Article  Google Scholar 

  8. 8.

    Murakami T, Yamada S, Kitagawa A, Maramatsu M, Noda K, Ogawa H, Sato Y, Takada E, Tashiro K, Yoshizawa J, Fukushima T, Kimura T, Ueda K (1996) In: Proceedings of the XVIII international linear accelerator conference: 830–832.

  9. 9.

    Yashima H, Hagiwara M, Sanami T, Yonai S (2018) JAEA-Conf 2017–001:219–222.

    Article  Google Scholar 

  10. 10.

    Ziegler JF The stopping and range of ions in matter (SRIM). Accessed April 2013

  11. 11.

    Bé M-M, Chisté V, Dulieu C, Browne E, Chechev V, Kuzmenko N, Helmer R, Nichols A, Schönfeld E, Dersch R (2004) Table of Radionuclides (Vol. 1 A = 1 to 150). Monographie BIPM-5: 173–190

  12. 12.

    IAEA (2001) IAEA-TECDOC-1211, Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA, Vienna.

  13. 13.

    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113(12):2841–2934

    CAS  Article  Google Scholar 

Download references


We wish to thank the operating crew of HIMAC for their reliable work. This work was supported by JSPS KAKENHI Grant Number JP17K10381.

Author information



Corresponding author

Correspondence to Masayuki Hagiwara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hagiwara, M., Yashima, H., Sanami, T. et al. Measurement of the excitation function of 96Zr(α,n)99Mo for an alternative production source of medical radioisotopes. J Radioanal Nucl Chem 318, 569–573 (2018).

Download citation


  • Activation cross section
  • Technetium 99 m
  • Molybdenum 99
  • Single photon emission computed tomography (SPECT)
  • Medical testing crisis
  • Helium beam