Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 569–573 | Cite as

Measurement of the excitation function of 96Zr(α,n)99Mo for an alternative production source of medical radioisotopes

  • Masayuki HagiwaraEmail author
  • Hiroshi Yashima
  • Toshiya Sanami
  • Shunsuke Yonai


To assess the feasibility of an innovative medical 99Mo/99mTc production route using a low-energy accelerator, we measured the excitation function of the 96Zr(α,n)99Mo reaction in the energy range from 11 to 23 MeV using a 24 MeV α beam. The present results showed higher values than past data in the peak region, although both data were almost identical above 17 MeV. The production rate of 99Mo from a 96Zr target with incident energies of α particles below 23 MeV was also estimated using the measured excitation function.


Activation cross section Technetium 99 m Molybdenum 99 Single photon emission computed tomography (SPECT) Medical testing crisis Helium beam 



We wish to thank the operating crew of HIMAC for their reliable work. This work was supported by JSPS KAKENHI Grant Number JP17K10381.


  1. 1.
    Pillai MRA, Dash A, Knapp FF (2013) J Nucl Med 54:313–323CrossRefPubMedGoogle Scholar
  2. 2.
    Van Noorden R (2013) Nature 504(7479):202–204CrossRefPubMedGoogle Scholar
  3. 3.
    Nagai Y, Hashimoto K, Hatukawa Y, Saeki H, Motoishi S, Sato N, Kawabata M, Harada H, Kin T, Tsukada K, Sato KT, Minato F, Iwamoto O, Iwamoto N, Seki Y, Yokoyama K, Shiina T, Ohta A, Takeuchi N, Kawauchi Y, Sato N, Yamabayashi H, Adachi Y, Kikuchi Y, Mitsumoto T, Igarashi T (2013) J Phys Soc Jpn. 82:064201-1–064201-7Google Scholar
  4. 4.
    Sekimoto S, Tatenuma K, Suzuki Y, Tsuguchi A, Tanaka A, Tadokoro T, Kani Y, Morikawa Y, Yamamoto A, Ohtsuki T (2017) J Radioanal Nucl Chem 311(2):1361–1366CrossRefGoogle Scholar
  5. 5.
    Rosenthal GB, Lewin HC (2014) Production of 99Mo using high-current alpha beams. In: NNSA’s 2014 Mo-99 topical meeting, 24–27 June 2014, Washington D.C.
  6. 6.
    Pupillo G, Esposito J, Gambaccini M, Haddad F, Michel N (2014) J Radioanal Nucl Chem 302(2):911–917CrossRefGoogle Scholar
  7. 7.
    Chowdhury DP, Pal S, Saha SK, Gangadharan S (1995) Nucl Instrum Meth B. 103(3):261–266CrossRefGoogle Scholar
  8. 8.
    Murakami T, Yamada S, Kitagawa A, Maramatsu M, Noda K, Ogawa H, Sato Y, Takada E, Tashiro K, Yoshizawa J, Fukushima T, Kimura T, Ueda K (1996) In: Proceedings of the XVIII international linear accelerator conference: 830–832.
  9. 9.
    Yashima H, Hagiwara M, Sanami T, Yonai S (2018) JAEA-Conf 2017–001:219–222. CrossRefGoogle Scholar
  10. 10.
    Ziegler JF The stopping and range of ions in matter (SRIM). Accessed April 2013
  11. 11.
    Bé M-M, Chisté V, Dulieu C, Browne E, Chechev V, Kuzmenko N, Helmer R, Nichols A, Schönfeld E, Dersch R (2004) Table of Radionuclides (Vol. 1 A = 1 to 150). Monographie BIPM-5: 173–190Google Scholar
  12. 12.
    IAEA (2001) IAEA-TECDOC-1211, Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA, Vienna.
  13. 13.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113(12):2841–2934CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Masayuki Hagiwara
    • 1
    Email author
  • Hiroshi Yashima
    • 2
  • Toshiya Sanami
    • 1
  • Shunsuke Yonai
    • 3
  1. 1.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  2. 2.Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityKumatori, SennanJapan
  3. 3.National Institutes for Quantum and Radiological Science and TechnologyInage-ku, Chiba-shiJapan

Personalised recommendations