Production possibility of 161Tb utilizing secondary neutrons generated by protons from a low-energy cyclotron onto an isotope production target

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The production possibility of the medically relevant radioisotope 161Tb using a 9Be + p (Ep = 18 MeV) neutron source was investigated at the MGC cyclotron of ATOMKI. The 161Tb is formed via the 160Gd(n,γ)161Gd → 161Tb nuclear process. The available EOB yield was about 8000 Bq C−1 g−1. Predictions based on Monte Carlo calculations in conjunction with TENDL-2017 cross-section data overestimate the experimental results. These preliminary results indicate that secondary neutrons generated in a high-intensity medical radioisotope production target station could be useful for research-scale 161Tb production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Engle JW, Kelsey CT, Bach H, Ballard BD, Fassbender ME, John KD, Birnbaum ER, Nortier FM (2012) Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux. In: Proceedings of the 14th international workshop on targery and target chemistry, AIP conference proceedings, vol 1509, pp 171–175

  2. 2.

    Engle JW, Birnbaum ER, Fassbender ME, John KD, Nortier FM (2014) Parasitic isotope production with cyclotron beam generated neutrons. In: Thomson J, Schaa V R W (eds) Proceedings of the 20th international conference on cyclotrons and their applications, Vancouver, 16–20 September 2013, JACoW, 2014, pp 251–453

  3. 3.

    Auditore L, Amato E, Baldari S (2017) Theoretical estimation of 64Cu production with neutrons emitted during 18F production with a 30 MeV medical cyclotron. Appl Radiat Isot 122:229–234

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibli R, Türler A, Zhernosekov K (2011) The low-energy β and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol 38:917–924

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Fenyvesi A (2004) Neutron sources for basic and applied research at the MGC-20E cyclotron of ATOMKI. In: Plompen A J M (ed) Proceedings of the enlargement workshop on neutron measurements and evaluations for applications—NEMEA, Budapest, 5–8 November 2003, EUR Report 21100 EN, 2004, pp 68–74

  6. 6.

    Brezovcsik K, Kovács Z, Szelecsényi F (2018) Separation of radioactive terbium from massive Gd targets for medical use. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-5718-3

    Article  Google Scholar 

  7. 7.

    JCGM 100:2008 (2008) Evaluation of measurement data—Guide to the expression of uncertainty in measurement. International bureau of weights and measures, BIPM, Sèvres, First edition, September 2008

  8. 8.

    Brown F, Kiedrowski B, Bull J (2010) MCNP5 1.60 Release notes. Los Alamos National Laboratory Report LA-UR-10-06235, pp 1–17

  9. 9.

    Brede HJ, Dietze G, Kudo K, Schrewe UJ, Tancu F, Wen C (1989) Neutron yields from thick Be targets bombarded with deuterons or protons. Nucl Instrum Methods A 274:332–344

    Article  Google Scholar 

  10. 10.

    Lone MA, Ferguson AJ, Robertson BC (1981) Characteristics of neutrons from Be targets bombarded with protons, deuterons and alpha particles. Nucl Instrum Methods 189:515–523

    CAS  Article  Google Scholar 

  11. 11.

    Koning AJ, Rochman D, van der Marck SC, Kopecky J, Sublet J Ch, Pomp S, Sjostrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2017) TENDL-2017: TALYS-Based evaluated nuclear data library. Available from https://tendl.web.psi.ch/tendl_2017/tendl2017.html (last updated 30 December 2017)

  12. 12.

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva SR. Forrest RA, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay OO, Herman M, Hlavač S, Kato K, Lalremruata B (2014) Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets 120:272–276. Library access available from: https://www-nds.iaea.org

    CAS  Article  Google Scholar 

  13. 13.

    NuDat 2.7: Interactive chart of nuclides. National nuclear data center, Brookhaven National Laboratory. Available from: http://www.nndc.bnl.gov/nudat2/

  14. 14.

    Kononov VN, Jurlov BD, Manturov GN, Poletaev ED, Timokhov VM, Shorin VS (1977) Fast neutron radiative capture cross-section for In-115, Ta-181, Au-197 and samarium and europium isotopes. Sov J Nucl Phys 26:500

    Google Scholar 

  15. 15.

    Perkin JL, O`Connor LP, Coleman RF (1958) Radiative capture cross sections for 14.5 MeV neutrons. Proc Phys Soc 72:505–513

    CAS  Article  Google Scholar 

  16. 16.

    Sahota HS, Mittal VK, Sidhu NPS (1986) Neutron capture cross-sections by comparative γ-activation. Ann Nucl Energy 13:287–288

    CAS  Article  Google Scholar 

  17. 17.

    Singh RKY, Ansari MA, Gautam RP, Rizvi IA, Kailas S (1988) Radiative capture of fast neutrons in 160Gd. Can J Phys 66:330–333

    CAS  Article  Google Scholar 

  18. 18.

    Valkonen M, Homberg P, Rieppo R, Keinänen JK, Kantele J (1976) Studies of 14 MeV neutron activation cross sections with special reference to the capture reaction. University of Jyväskylä, Department of Physics Reports, No. 1/1976

  19. 19.

    Voignier J, Joly S, Grenier G (1981) Neutron capture cross section measurements of rubidium, yttrium, niobium, gadolinium, tungsten, platinum and thallium between 0.5 and 3.0 MeV. Centre d`Etudes Nucleaires, Saclay Reports, No. 5089

  20. 20.

    Wille RG, Fink RW (1960) Activation cross sections for 14.8 MeV neutrons and some new radioactive nuclides in the rare earth region. Phys Rev 118:242–248

    CAS  Article  Google Scholar 

  21. 21.

    Frehaut J, Bertin A, Bois R, Jary J, Mosinski G (1980) Status of (n,2n) cross section measurements at Bruyeres-le-Chatel. U.S. report to the I.N.D.C., Vol 1, No. 84, p 399

Download references

Acknowledgements

The Hungarian authors wish to thank the financial support by the Hungarian Research Foundation, (Budapest, NKFIH/OTKA K108669). In part, this work was supported by the VKSZ_14-1-2015-0021 project financed from the National Research Development and Innovation Fund of Hungary in the framework of the Széchenyi 2020 Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferenc Szelecsényi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szelecsényi, F., Fenyvesi, A., Steyn, G.F. et al. Production possibility of 161Tb utilizing secondary neutrons generated by protons from a low-energy cyclotron onto an isotope production target. J Radioanal Nucl Chem 318, 491–496 (2018). https://doi.org/10.1007/s10967-018-6116-6

Download citation

Keywords

  • natGd target
  • Neutron reactions
  • Monte Carlo calculation
  • TENDL 2017 library
  • 161Tb and 159Gd formation