Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 491–496 | Cite as

Production possibility of 161Tb utilizing secondary neutrons generated by protons from a low-energy cyclotron onto an isotope production target

  • Ferenc SzelecsényiEmail author
  • András Fenyvesi
  • Gideon Francois Steyn
  • Károly Brezovcsik
  • Zoltán Kovács
  • Barna Biró
Article
  • 97 Downloads

Abstract

The production possibility of the medically relevant radioisotope 161Tb using a 9Be + p (Ep = 18 MeV) neutron source was investigated at the MGC cyclotron of ATOMKI. The 161Tb is formed via the 160Gd(n,γ)161Gd → 161Tb nuclear process. The available EOB yield was about 8000 Bq C−1 g−1. Predictions based on Monte Carlo calculations in conjunction with TENDL-2017 cross-section data overestimate the experimental results. These preliminary results indicate that secondary neutrons generated in a high-intensity medical radioisotope production target station could be useful for research-scale 161Tb production.

Keywords

natGd target Neutron reactions Monte Carlo calculation TENDL 2017 library 161Tb and 159Gd formation 

Notes

Acknowledgements

The Hungarian authors wish to thank the financial support by the Hungarian Research Foundation, (Budapest, NKFIH/OTKA K108669). In part, this work was supported by the VKSZ_14-1-2015-0021 project financed from the National Research Development and Innovation Fund of Hungary in the framework of the Széchenyi 2020 Program.

References

  1. 1.
    Engle JW, Kelsey CT, Bach H, Ballard BD, Fassbender ME, John KD, Birnbaum ER, Nortier FM (2012) Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux. In: Proceedings of the 14th international workshop on targery and target chemistry, AIP conference proceedings, vol 1509, pp 171–175Google Scholar
  2. 2.
    Engle JW, Birnbaum ER, Fassbender ME, John KD, Nortier FM (2014) Parasitic isotope production with cyclotron beam generated neutrons. In: Thomson J, Schaa V R W (eds) Proceedings of the 20th international conference on cyclotrons and their applications, Vancouver, 16–20 September 2013, JACoW, 2014, pp 251–453Google Scholar
  3. 3.
    Auditore L, Amato E, Baldari S (2017) Theoretical estimation of 64Cu production with neutrons emitted during 18F production with a 30 MeV medical cyclotron. Appl Radiat Isot 122:229–234CrossRefPubMedGoogle Scholar
  4. 4.
    Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibli R, Türler A, Zhernosekov K (2011) The low-energy β and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol 38:917–924CrossRefPubMedGoogle Scholar
  5. 5.
    Fenyvesi A (2004) Neutron sources for basic and applied research at the MGC-20E cyclotron of ATOMKI. In: Plompen A J M (ed) Proceedings of the enlargement workshop on neutron measurements and evaluations for applications—NEMEA, Budapest, 5–8 November 2003, EUR Report 21100 EN, 2004, pp 68–74Google Scholar
  6. 6.
    Brezovcsik K, Kovács Z, Szelecsényi F (2018) Separation of radioactive terbium from massive Gd targets for medical use. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-018-5718-3 CrossRefGoogle Scholar
  7. 7.
    JCGM 100:2008 (2008) Evaluation of measurement data—Guide to the expression of uncertainty in measurement. International bureau of weights and measures, BIPM, Sèvres, First edition, September 2008Google Scholar
  8. 8.
    Brown F, Kiedrowski B, Bull J (2010) MCNP5 1.60 Release notes. Los Alamos National Laboratory Report LA-UR-10-06235, pp 1–17Google Scholar
  9. 9.
    Brede HJ, Dietze G, Kudo K, Schrewe UJ, Tancu F, Wen C (1989) Neutron yields from thick Be targets bombarded with deuterons or protons. Nucl Instrum Methods A 274:332–344CrossRefGoogle Scholar
  10. 10.
    Lone MA, Ferguson AJ, Robertson BC (1981) Characteristics of neutrons from Be targets bombarded with protons, deuterons and alpha particles. Nucl Instrum Methods 189:515–523CrossRefGoogle Scholar
  11. 11.
    Koning AJ, Rochman D, van der Marck SC, Kopecky J, Sublet J Ch, Pomp S, Sjostrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2017) TENDL-2017: TALYS-Based evaluated nuclear data library. Available from https://tendl.web.psi.ch/tendl_2017/tendl2017.html (last updated 30 December 2017)
  12. 12.
    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva SR. Forrest RA, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay OO, Herman M, Hlavač S, Kato K, Lalremruata B (2014) Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets 120:272–276. Library access available from: https://www-nds.iaea.org CrossRefGoogle Scholar
  13. 13.
    NuDat 2.7: Interactive chart of nuclides. National nuclear data center, Brookhaven National Laboratory. Available from: http://www.nndc.bnl.gov/nudat2/
  14. 14.
    Kononov VN, Jurlov BD, Manturov GN, Poletaev ED, Timokhov VM, Shorin VS (1977) Fast neutron radiative capture cross-section for In-115, Ta-181, Au-197 and samarium and europium isotopes. Sov J Nucl Phys 26:500Google Scholar
  15. 15.
    Perkin JL, O`Connor LP, Coleman RF (1958) Radiative capture cross sections for 14.5 MeV neutrons. Proc Phys Soc 72:505–513CrossRefGoogle Scholar
  16. 16.
    Sahota HS, Mittal VK, Sidhu NPS (1986) Neutron capture cross-sections by comparative γ-activation. Ann Nucl Energy 13:287–288CrossRefGoogle Scholar
  17. 17.
    Singh RKY, Ansari MA, Gautam RP, Rizvi IA, Kailas S (1988) Radiative capture of fast neutrons in 160Gd. Can J Phys 66:330–333CrossRefGoogle Scholar
  18. 18.
    Valkonen M, Homberg P, Rieppo R, Keinänen JK, Kantele J (1976) Studies of 14 MeV neutron activation cross sections with special reference to the capture reaction. University of Jyväskylä, Department of Physics Reports, No. 1/1976Google Scholar
  19. 19.
    Voignier J, Joly S, Grenier G (1981) Neutron capture cross section measurements of rubidium, yttrium, niobium, gadolinium, tungsten, platinum and thallium between 0.5 and 3.0 MeV. Centre d`Etudes Nucleaires, Saclay Reports, No. 5089Google Scholar
  20. 20.
    Wille RG, Fink RW (1960) Activation cross sections for 14.8 MeV neutrons and some new radioactive nuclides in the rare earth region. Phys Rev 118:242–248CrossRefGoogle Scholar
  21. 21.
    Frehaut J, Bertin A, Bois R, Jary J, Mosinski G (1980) Status of (n,2n) cross section measurements at Bruyeres-le-Chatel. U.S. report to the I.N.D.C., Vol 1, No. 84, p 399Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ferenc Szelecsényi
    • 1
    Email author
  • András Fenyvesi
    • 1
  • Gideon Francois Steyn
    • 2
  • Károly Brezovcsik
    • 1
  • Zoltán Kovács
    • 1
  • Barna Biró
    • 1
  1. 1.Cyclotron Application LaboratoryInstitute for Nuclear Research of the Hungarian Academy of Sciences, ATOMKIDebrecenHungary
  2. 2.iThemba LABSNational Research FoundationSomerset WestSouth Africa

Personalised recommendations