Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 149–155 | Cite as

Primary standardization of the massic activity of a 233Pa solution

  • R. FitzgeraldEmail author
  • L. Pibida
Article
  • 93 Downloads

Abstract

Protactinium-233 (233Pa) is used as a tracer for radiochemical analysis and is of particular interest as an isotope dilution mass spectrometry (IDMS) spike for 231Pa/235U radio-chronometry. To this end, we present massic activity determinations by two methods for a 233Pa solution, which was prepared at Lawrence Livermore National Laboratory (LLNL) and is being characterized at multiple labs as part of a 231Pa reference material production project. One activity determination method was 4πβ-γ anti-coincidence counting in a multi-dimensional extrapolation model, with Monte Carlo corrections. An independent massic activity determination was completed by \(\gamma\)-ray spectrometry using 5 high purity germanium (HPGe) detectors using 5 \(\gamma\)-ray lines. The anti-coincidence and \(\gamma\)-ray spectrometry results agree and have combined standard uncertainties of about 0.33% and 1.0% respectively. In addition, the two methods were combined to derive \(\gamma\)-ray emission probabilities from 233Pa decay.

Keywords

Protactinium-233 Pa-233 233Pa Activity IDMS spike Gamma-ray emission probability 

Notes

Acknowledgements

The authors wish to acknowledge Ross Williams and his colleagues at LLNL who provided the 233Pa solution along with leading the larger 231Pa reference material project and our NIST colleague Richard Essex who coordinated the 233Pa and 231Pa measurements at NIST. This work was supported in part by the Department of Homeland Security.

References

  1. 1.
    La Rosa J, Outola I, Crawford E, Nour S, Kurosaki H, Inn K (2008) Radiochemical measurement of 237Np in a solution of mixed radionuclides: experiences in chemical separation and alpha-spectrometry. J Rad Nucl Chem 277(1):11–18.  https://doi.org/10.1007/s10967-008-0702-y CrossRefGoogle Scholar
  2. 2.
    Sill CW (1978) Radiochemical determination of protactinium-231 in environmental and biological materials. Anal Chem 50(11):1559–1571CrossRefPubMedGoogle Scholar
  3. 3.
    Morgenstern A, Apostolidis C, Mayer K (2002) Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal Chem 74:5513–5516CrossRefPubMedGoogle Scholar
  4. 4.
    Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal At Spectrom 28(5):666.  https://doi.org/10.1039/c3ja50041a CrossRefGoogle Scholar
  5. 5.
    Kristo MJ, Williams R, Gaffney AM, Kayzar-Boggs TM, Schorzman KC, Lagerkvist P, Vesterlund A, Ramebäck H, Nelwamondo AN, Kotze D, Song K, Lim SH, Han S-H, Lee C-G, Okubo A, Maloubier D, Cardona D, Samuleev P, Dimayuga I, Varga Z, Wallenius M, Mayer K, Loi E, Keegan E, Harrison J, Thiruvoth S, Stanley FE, Spencer KJ, Tandon L (2018) The application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics international technical working group (ITWG). J Rad Nucl Chem 315(2):425–434.  https://doi.org/10.1007/s10967-017-5680-5 CrossRefGoogle Scholar
  6. 6.
    Bé M-M, Chisté V, Dulieu C, Mougeot X, Browne E, Chechev V, Kuzmenko N, Kondev F, Luca A, Galán M, Nichols AL, Arinc A, Huang X (2010) Table of radionuclides. BIPM Monographie, vol 5. SévresGoogle Scholar
  7. 7.
    Chechev VP, Kuzmenko KN (2010) DDEP Evaluation of Pa-233. Table of RadionuclidesGoogle Scholar
  8. 8.
    Luca A, Etcheverry M, Morel J (2000) Emission probabilities of the main g-rays of 237Np in equilibrium with 233Pa. Appl Rad Isot 52:481–486CrossRefGoogle Scholar
  9. 9.
    DeVries D, Griffin H (2008) X- and gamma-ray emissions observed in the decay of 237Np and 233Pa. Appl Radiat Isot 66(5):668–675.  https://doi.org/10.1016/j.apradiso.2007.07.019 CrossRefPubMedGoogle Scholar
  10. 10.
    Kondev FG, Ahmad I, Greene JP, Nichols AL, Kellett MA (2011) Measurements of absolute gamma-ray emission probabilities in the decay of 233Pa. Nucl Instrum Methods Phys Res Sect A 652(1):654–656.  https://doi.org/10.1016/j.nima.2011.01.147 CrossRefGoogle Scholar
  11. 11.
    Schötzig U, Schönfeld E, Janszen H Standardisation and photon emission probabilities in the decay of 237Np/233Pa. Appl Rad Isot 52:883-889Google Scholar
  12. 12.
    Shchukin G, Iakovlev K, Morel J (2004) Analysis of the 237Np-233Pa photon spectrum using the full response function method. Appl Radiat Isot 60(2–4):239–246.  https://doi.org/10.1016/j.apradiso.2003.11.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Vaninbroukx R, Bortels G, Denecke B (1984) Determination of photon-emission probabilities in the decay of 237Np and its daughter 233Pa. Int J Appl Radiat Isot 9:905–906.  https://doi.org/10.1016/0020-708X(84)90029-2 CrossRefGoogle Scholar
  14. 14.
    Xiaolong H, Ping L, Baosong W (2005) Evaluation of 233Pa decay data. Appl Radiat Isot 62(5):797–804.  https://doi.org/10.1016/j.apradiso.2004.11.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Woods MJ, Woods DH, Woods SA, Husband LJ, Jerome SM, Michotte C, Ratel G, Crespo M, Garcia-Torano E, Rodriguez L, Luca A, Denecke B, Sibbens G, Morel J, Etcheverry M, Santry D, Janssen H, Schönfeld E, Schötzig U (2002) Standardization and decay data of 237Np. Appl Rad Isot 56:415–420.  https://doi.org/10.1016/S0969-8043(01)00224-X CrossRefPubMedGoogle Scholar
  16. 16.
    Woods SA, Woods DH, de Lavison P, Jerome SM, Makepeace JL, Woods MJ, Husband LJ, Lineham S (2000) Standardisation and measurement of the decay scheme data of 237Np. Appl Rad Isot 52:475–479.  https://doi.org/10.1016/S0969-8043(99)00197-9 CrossRefPubMedGoogle Scholar
  17. 17.
    Harada H, Nakamura S, Ohta M, Fujii T, Yamana H (2006) Emission probabilities of gamma rays from the decay of 233Pa and 238Np, and the thermal neutron capture cross section of 237Np. J Nucl Sci Technol 43(11):1289–1297.  https://doi.org/10.1080/18811248.2006.9711223 CrossRefGoogle Scholar
  18. 18.
    Singh B, Tuli JK (2005) Nuclear data sheets for A = 233. Nucl Data Sheets 109Google Scholar
  19. 19.
    NIST Ampoule Specifications and Opening Procedure. NIST PML Radiation Physics Division. https://www.nist.gov/pml/radiation-physics/ampoule-specifications-and-opening-procedure. 2018
  20. 20.
    Fitzgerald R (2016) Monte Carlo based approach to the LS–NaI 4πβ-γ anticoincidence extrapolation and uncertainty. Appl Radiat Isot 109:308–313.  https://doi.org/10.1016/j.apradiso.2015.11.107 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lucas LL (1998) Calibration of the massic activity of a solution of 99Tc. Appl Radiat Isot 49(9–11):1061–1064CrossRefGoogle Scholar
  22. 22.
    Baerg AP (1981) Multiple channel 4pb-g anti-coincidence counting. Nucl Instrum Methods 190:345–349CrossRefGoogle Scholar
  23. 23.
    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303.  https://doi.org/10.1016/s0168-9002(03)01368-8 CrossRefGoogle Scholar
  24. 24.
    Pibida L, Hsieh E, Fuentes-Figueroa A, Hammond MM, Karam L (2006) Software studies for germanium detectors data analysis. Appl Radiat Isot 64(10–11):1313–1318.  https://doi.org/10.1016/j.apradiso.2006.02.076 CrossRefPubMedGoogle Scholar
  25. 25.
    Taylor BN, Kuyatt CE (1994) Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST TN 1297Google Scholar
  26. 26.
    BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2008) Evaluation of measurement data -Guide to the expression of uncertainty in measurement. JCGMGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.NISTGaithersburgUSA

Personalised recommendations