Skip to main content
Log in

Investigation of uranium(VI) sorption in mesoporous silica gel using gamma spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gamma spectroscopy was used to quantify the accumulation of the uranyl ion (UO22+) into mesoporous silica gel in an aqueous solution under static and pressure-driven flow conditions. The amount of uranyl accumulated into silica gel under static conditions does not trend with the surface area reported by the manufacturer, but it is controlled by the silica gel permeability. Under flow conditions, the amount of uranyl deposited within mesoporous silica gel increases with pore size and ion removal efficiencies ranging from 1.8 to 7.0% were observed. Uranium transport and accumulation within mesoporous silicates is important in environmental monitoring, waste management and remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gurgel JM, Andrade Filho LS, Grenier P, Meunier F (2001) Thermal diffusivity and adsorption kinetics of silica-gel/water. Adsorption 7(3):211–219

    Article  CAS  Google Scholar 

  2. Tran HH, Roddick FA, O’Donnell JA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ion I. adsorption and kinetics. Water Res 33:2992–3000

    Article  CAS  Google Scholar 

  3. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569. https://doi.org/10.1016/0016-7037(78)90001-7

    Article  CAS  Google Scholar 

  4. Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. U.S. Department of Energy: Subsurface Science Program

  5. Dodd B, Tepper G Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration. In: Grim GP, Barber HB, Furenlid LR (eds) SPIE

  6. Ishibashi K, Sakamaki S, Imasaka T, Ishibashi N (1989) Determination of uranium at ultratrace levels by time-resolved laser fluorimetry. Anal Chim Acta 219:181–190. https://doi.org/10.1016/S0003-2670(00)80349-9

    Article  CAS  Google Scholar 

  7. Kenney-Wallace GA, Wilson JP, Farrell JF, Gupta BK (1981) Direct determination of uranyl ion by nanosecond dye-laser spectroscopy. Talanta 28:107–113. https://doi.org/10.1016/0039-9140(81)80153-1

    Article  CAS  PubMed  Google Scholar 

  8. Lopez M, Birch DJS (1996) Uranyl photophysics on colloidal silica: an alternative luminescence-enhancing medium for uranyl assay. Anal 121:905. https://doi.org/10.1039/an9962100905

    Article  CAS  Google Scholar 

  9. Bayramoglu G, Arica MY (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification into amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater 226:117–124. https://doi.org/10.1016/j.micromeso.2015.12.040

    Article  CAS  Google Scholar 

  10. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17. https://doi.org/10.1016/j.jenvman.2015.12.005

    Article  CAS  Google Scholar 

  11. Zhu L, Shi X, Song L et al (2016) Mesoporous silica (KIT-6) derivatized with hydroxyquinoline functionalities as a selective adsorbent of uranium(VI). J Radioanal Nucl Chem 308:381–392. https://doi.org/10.1007/s10967-015-4474-x

    Article  CAS  Google Scholar 

  12. Budnyak TM, Strizhak AV, Gładysz-Płaska A et al (2016) Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater 314:326–340. https://doi.org/10.1016/j.jhazmat.2016.04.056

    Article  CAS  PubMed  Google Scholar 

  13. Zhu L, Yuan L-Y, Xia L-S, Wang L (2016) Incorporation of magnetism into the dihydroimidazole functionalized mesoporous silica for convenient U(VI) capture. J Radioanal Nucl Chem 308:447–458. https://doi.org/10.1007/s10967-015-4391-z

    Article  CAS  Google Scholar 

  14. Ayata S, Aydinci S, Merdivan M et al (2010) Sorption of uranium using silica gel with benzoylthiourea derivatives. J Radioanal Nucl Chem 285:525–529. https://doi.org/10.1007/s10967-010-0646-x

    Article  CAS  Google Scholar 

  15. IAEA Nuclear Data for Safeguards. In: Gamma-ray energies and emission probabilities for actinides and natural decay products. https://www-nds.iaea.org/sgnucdat/a3.htm

  16. Table of Nuclides. http://atom.kaeri.re.kr:8080/. Accessed 19 Mar 2018

  17. Knoll GF (2010) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  18. Model 747 and 747E: Lead Shield. http://www.canberra.com/products/detectors/pdf/747-SS-C40114.pdf. Accessed 19 Mar 2018

  19. Standard Electrode Coaxial Ge Detectors. http://www.canberra.com/products/detectors/pdf/SEGe-detectors-C49317.pdf. Accessed 19 Mar 2018

  20. Dodd BM, Tafreshi HV, Tepper GC (2016) Flow-enhanced kinetics of uranyl (UO2) transport into nano-porous silica gel. Mater Des 106:330–335. https://doi.org/10.1016/j.matdes.2016.05.107

    Article  CAS  Google Scholar 

  21. Zaki MR, Abd-El-Moneim I (1968) Studies on the uptake of uranium(VI) on silica gel. Zeitschrift fiir anorgmische und allgemeine Chemie 360:208–212. https://doi.org/10.1002/zaac.19683600313

    Article  CAS  Google Scholar 

  22. Milonjić SK, Čokeša DM, Stevanović RV (1992) Dynamic adsorption of uranium(VI) and zirconium(IV) on silica gel. J Radioanal Nucl Chem Art 158:79–90. https://doi.org/10.1007/BF02034775

    Article  Google Scholar 

  23. Reilly D, Ensslin N, Smith H et al (1991) Passive nondestructive assay of nuclear materials. US Department of Commerce, National Technical Information Service, Springfield

    Google Scholar 

  24. Cryo-Cycle II: Hybrid Cryostat. http://www.canberra.com/products/detectors/pdf/Cryo-Cycle_II_C40847.pdf. Accessed 19 Mar 2018

  25. Genie 2000: Basic Spectroscopy Software. http://www.canberra.com/products/radiochemistry_lab/pdf/G2K-BasicSpect-SS-C40220.pdf. Accessed 19 Mar 2018

  26. Genie 2000: Gamma Analysis Software. http://www.canberra.com/products/radiochemistry_lab/pdf/Genie-2000_Gamma_Analysis_Software_SS-C47691.pdf. Accessed 19 Mar 2018

  27. Model S574 LabSOCS: Calibration Saftware. http://canberra.com/products/radiochemistry_lab/pdf/LabSOCS-SS-C40167.pdf. Accessed 19 Mar 2018

  28. Lux P Secular and Transient Equilibrium Formula. http://www.plux.co.uk/secular-and-transient-equilibrium-formula/

Download references

Acknowledgements

VCU College of Engineering, Department of Mechanical and Nuclear Engineering supported this work. In addition the authors would like to acknowledge the Nuclear Regulatory Commission for partially supporting this work (NRC-HQ-84-14-G-0051, NRC-HQ-13-G-38-0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Dodd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodd, B., Cartwright, M., Goddard, B. et al. Investigation of uranium(VI) sorption in mesoporous silica gel using gamma spectroscopy. J Radioanal Nucl Chem 318, 1077–1083 (2018). https://doi.org/10.1007/s10967-018-6108-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6108-6

Keywords

Navigation