Skip to main content
Log in

Natural radioactivity measurements and age-dependent dose assessment in groundwater from Al-Zulfi, Al-Qassim and Al-Majmaah regions, Saudi Arabia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the levels of natural radioactivity in the groundwater samples collected from 26 different locations in Al-Zulfi, Al-Qassim and Al-Majmaah regions were determined. The estimated average values of 226Ra, 228Ra, 40K, gross α and gross β activities in the samples were 0.87 Bq L−1, 1.33 Bq L−1, 4.22 Bq L−1, 36.82 mBq L−1 and 831.91 mBq L−1, respectively. We found that age-dependent effective ingestion dose from radionuclides in all samples were higher than WHO recommended levels of 0.1 µSv y−1 for adults 0.2 µSv y−1 for children and 0.26 µSv y−1 for infants while 20 sampling locations have age-dependent effective dose equivalent from β contributors were higher than WHO recommended level of 0.1 mSv y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vesterbacka P (2007) Natural radioactivity in drinking water in Finland, Boreal. Environ Res 12:11–16

    CAS  Google Scholar 

  2. Alam MNC, Kamal MI, Ghose M, Islam S, Anwaruddin M (1999) Radiological assessment of drinking water of the Chittagong region of Bangladesh. Radiat Prot Dosim 82:207–214

    Article  CAS  Google Scholar 

  3. Gruber V, Maringer FJ, Landstetter C (2009) Radon and other natural radionuclides in drinking water in Austria: measurement and assessment. Appl Radiat Isot 67:913–917

    Article  CAS  Google Scholar 

  4. US-EPA (2003) List of drinking water contaminants and MCLs. United State of Environmental Protection Agency, EPA. http://www.epa.gov/safewater/mcl.html#mcls

  5. WHO (2011) Guidelines for drinking-water quality. Chapter 9 Radiological Aspects, 4th Edition. World Health Organization Library Cataloguing-in-Publication Data NLM classification: WA 675, Geneva

  6. Bunotto DM, Bueno TO (2008) The natural radioactivity in Guarani aquifer groundwater, Brazil. Appl Radiat Isot 66:1507–1522

    Article  Google Scholar 

  7. ICRP (1990) Recommendations of the international commission on radiological protection. International Commission on Radiological Protection, Publication 60, vol. 21 (Nos. 1–3), Pergamon Press Annals

  8. Al-Refeai T, Al-Ghamdy D (1994) Geological and geotechnical aspects of Saudi Arabia. Geotech Geo Eng 12:253–276

    Article  Google Scholar 

  9. RGME (1982) Al-Ghatt School soil investigations, Rashid Geotechnical and Material Engineers, unpublished report

  10. Al-Moser AA (1988) Shear strength characteristics and effect of lime on strength parameters of soil from Al-Zulfi. BSc Project, Civil Engineering Department, King Saud University, Riyadh

    Google Scholar 

  11. Al-Santaly IM (1981) Al-Ghatt soil problems. BSc Project, Civil Engineering Department, King Saud University

  12. RGME (1986) Geotechnical investigation. Rashid Geotechnical and Material Engineers, King Saud University, Gassim Campus, unpublished reports

  13. Khalifa AM (2015) The Ediacaran–Cambrian and Ordovician rocks of Al Qasim Province, Saudi Arabia: facies, depositional history and regional correlation. J Afr Earth Sci 109:263–282

    Article  Google Scholar 

  14. Jobbagy V, Watjen U, Meresova J (2010) Current status of gross alpha/beta activity analysis in water samples: a short overview of methods. J Radional Nucl Chem 286:393–399

    Article  CAS  Google Scholar 

  15. Al-Dahaan MAS, Al-Ansari N, Knutsson S (2016) Influence of groundwater hypothetical salts on electrical conductivity total dissolved soilds. Eng (Sci Res Publ) 8:823–830

    CAS  Google Scholar 

  16. Abdurabu AW, Saleh AM, Ramli TA, Heryansyah A (2016) Occurrence of natural radioactivity and corresponding health risk in groundwater with an elevated radiation background in Juban District, Yemen. Environ Earth Sci 75:1360–1371

    Article  Google Scholar 

  17. SM 7110 (1996) Gross alpha and gross beta radioactivity (total, suspended, and dissolved). Ed. 20th, EPA Approved

  18. Krieger LH (1975) Interim radiochemical methodology for drinking water, EPA 600/4-75-008. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  19. Herman L, Krieger EL, Whittaker (1980) Prescribed procedures for measurement of radioactivity in drinking, EPA-600/4-80-032, United States

  20. ISO 9697 (2008) Water quality: measurement of gross beta activity in non-saline water. International Organization for Standardization, Geneva

    Google Scholar 

  21. US-EPA (2007) Drinking water standards and health advisories table. United State of Environmental Protection Agency. http://www3.epa.gov/region9/water/drinking/files/dwsha_0607.pdf. Accessed 16 Dec 2015

  22. Alkhomashi N, Ibhrahim Al-Hamarneh F, Almasoud IF (2016) Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia. Chemosphere 144:1928–1936

    Article  CAS  Google Scholar 

  23. Shabana EI, Kinsara AA (2014) Radioactivity in the groundwater of a high background radiation area. J Environ Radioact 137:181–189

    Article  CAS  Google Scholar 

  24. Tomita J, Takada T, Tamamura S, Zhang J, Takahatake Y, Akita F, Nagao S, Yamamoto M (2014) Radium isotopes in saline groundwater from the western and central Hokkaido. Jpn. J Hot Spring Sci 64:146–164

    Google Scholar 

  25. ICRP (1996) Age-dependent doses to members of the public from intake of radionuclides: part 5, compilation of ingestion and inhalation dose coefficients, annals of the ICRP, 26 (1), ICRP publication 72. Pergamon Press, Oxford

    Google Scholar 

  26. WHO (2004) Guidelines for drinking water quality, Recommendations, Vol. 1, 3rd Edition, World Health Organization, Geneva

  27. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to General Assembly. Annex B: Exposure from Natural Radiation Sources and Report to General Assembly. With Scientific Annexes, United Nations Sales Publications No. E.00.IX.3 Volume I: Sources and No. E.00.IX.4 (Volume II: Effects). United Nations, New York, 1220 Pp

  28. WHO (1996) Guidelines for drinking water quality, Vol. 2, 2nd Edition, World Health Organization, Geneva

  29. US-EPA (2001) Health effect assessments summary tables (HEAST) for Radionuclides. United State of Environmental Protection Agency, Washington, DC

    Google Scholar 

  30. WHO (2008) Guidelines for drinking water quality [electronic resource]: incorporating 1st and 2nd addenda recommendations, Vol. 1, World Health Organization, 197–209. Accessed 18 Jan 2015

  31. WHO (2004) Guidelines for drinking water quality: radiological aspects. World Health Organization. http://www.who.int/water_sanitation_health/dwq/gdwq3/en/S

  32. Calin MR, Ion AC, Radu I (2015) Evaluation of quality parameters and of natural radionuclides concentrations in natural mineral water in Romania. J Radioanal Nucl Chem 303:305–313

    Article  CAS  Google Scholar 

  33. Ramadan KA, Seddeek MK, Nijim A, Sharshar T, Badran HM (2011) Radioactivity of sand, groundwater and wild plants in northeast Sinai, Egypt. Isot Environ Health Stud 47:456–469

    Article  CAS  Google Scholar 

  34. Desideri D, Roselli C, Feduzi L, Meli MA (2007) Radiological characterization of drinking waters in Central Italy. Microchem J 87:13–19

    Article  CAS  Google Scholar 

  35. Altıkulac A, Turhan S, Gumus H (2015) The natural and artificial radionuclides in drinking water samples and consequent population doses. J Radiat Res Appl Sci. https://doi.org/10.1016/j.jrras.2015.06.007

    Article  Google Scholar 

  36. Beyermann M, Bunger T, Schmidt K, Obrikat D (2010) Occurrence of natural radioactivity in public water supples in Germany: 238U, 234U, 235U, 228Ra, 226Ra, 222Rn, 210Pb, 210Po and gross alpha activity concentration. Radiat Prot Dosim 141:72–81

    Article  CAS  Google Scholar 

  37. Osman AA, Isam SMM, Ibrahim A, Saif S, Siddeeg MB, Eltayeb H, Idriss H, Hamza W, Yousif EH (2008) Investigation of natural radioactivity levels in water around Kadugli, Sudan. Appl Radiat Isot 66:1650–1653

    Article  CAS  Google Scholar 

  38. Isam SMM, Pettersson HBL, Lund E (2002) Uranium and thorium series radionuclides in drinking water from drilled bedrock wells: correlation to geology and bedrock radioactivity, and dose estimation. Radiat Prot Dosim 102:249–258

    Article  Google Scholar 

  39. Ajayi OS, Owolabi TP (2008) Determination of natural radioactivity in drinking water in private dug well in Akure, southwestern Nigeria. Radiat Prot Dosim 128(4):477–484

    Article  CAS  Google Scholar 

  40. Dinh Chau N, Michalec B (2009) Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. J Radioanal Nucl Chem 279:121–129

    Article  Google Scholar 

  41. Turhan S, Ozcitak E, Taskin H, Varinlioglu A (2013) Determination of natural radioactivity by gross alpha and beta measurements in ground water samples. Water Res 47:3103–3108

    Article  CAS  Google Scholar 

  42. Al-Amir MS, Al-Hamarneh FI, Al-Abed T, Awadallah M (2012) Natural radioactivity in tap water and associated age-dependent dose and lifetime risk assessment in Amman, Jordan. Appl Radiat Isot 70:692–698

    Article  CAS  Google Scholar 

  43. Jankovic MM, Todorovic JD, Todorovic AN, Nikolov J (2012) Natural radionuclides in drinking waters in Serbia. Appl Radiat Isot 70:2703–2710

    Article  CAS  Google Scholar 

  44. Rangel DJI, Lopez DRH, Garcia MF, Torres QLL, Villalba ML, Sujo CL, Montero CME (2002) Radioactivity in bottled waters sold in Mexico. Appl Radiat Isot 56:931–936

    Article  Google Scholar 

  45. Palomo M, Villa M, Casacuberta N, Penalver A, Borrull F, Aguilar C (2011) Evaluation of different parameters affecting the liquid scintillation spectrometry measurement of gross alpha and beta index in water samples. Appl Radiat Isot 69:1274–1281

    Article  CAS  Google Scholar 

  46. Kovacs T, Bodrogi E, Dombovari P, Somlai J, Cs Nemeth, Capote A, Tarjan S (2004) 238U, 226Ra, 210Po concentrations of bottled mineral waters in Hungary and their committed effective dose. Radiat Prot Dosim 108:175–181

    Article  CAS  Google Scholar 

  47. Karamanis D, Stamoulis K, Ioannides KG (2007) Natural radionuclides and heavy metals in bottled water in Greece. Desalination 213:90–97

    Article  CAS  Google Scholar 

  48. Forte M, Rusconi R, Cazzaniga MT, Sgorbati G (2007) The measurement of radioactivity in Italian drinking waters. Microchem J 85:98–102

    Article  CAS  Google Scholar 

  49. Darren A, Lytle Thomas S, Lili W, Abe C (2014) The accumulation of radioactive contaminants in drinking water distribution systems. Water Res 50:396–407

    Article  Google Scholar 

  50. Gorur KF, Keser R, Akcay N, Dizman S, Okumusoglu TN (2011) Radionuclides and heavy metals concentrations in Turkish market tea. Food Control 22:2065–2070

    Article  CAS  Google Scholar 

  51. US-EPA (1988) Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation. United State of Environmental Protection Agency, Submersion and Ingestion, Federal Guideline Report No. 11, EPA 520/1-88-020, Washington, DC

Download references

Acknowledgements

The authors acknowledged the financial support provided by King Abdulaziz City for Science and Technology (Project No. 35–37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Alharbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, T., Adel, A., Baloch, M.A. et al. Natural radioactivity measurements and age-dependent dose assessment in groundwater from Al-Zulfi, Al-Qassim and Al-Majmaah regions, Saudi Arabia. J Radioanal Nucl Chem 318, 935–945 (2018). https://doi.org/10.1007/s10967-018-6053-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6053-4

Keywords

Navigation