Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide

Abstract

This study shows a membrane containing a protonated manganese dioxide powder that is able to continually extract tritium from light water at room temperature. The method of using membrane-supplied protons through a proton conductive polymer film from acidic aqueous solution was remarkably effective at maintaining a continual extraction of tritium from light water, compared to the use of the protonated manganese dioxide powder alone. The extraction mechanism of tritium might be based on the prior oxidation of OT at the interface of protonated manganese dioxide and water via neutralization between H+/T+ and OH/OT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Villani S (1976) Isotope separation. American Nuclear Society, La Grange Park

    Google Scholar 

  2. 2.

    Gould RF (1978) Separation of hydrogen isotopes. American Nuclear Society, La Grange Park

    Google Scholar 

  3. 3.

    Vasaru G (1993) Tritium isotope separation. CRC Press, Boca Raton

    Google Scholar 

  4. 4.

    Devidson RB, VonHatten P, Schaub M, Ulrich D (1988) Commissioning and first operating experience at Darlington tritium removal facility. Fusion Technol 14:472–479

    Article  Google Scholar 

  5. 5.

    Shimizu M, Kitamoto A, Takashima Y (1983) New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed. J Nucl Sci Technol 20:36–47

    CAS  Article  Google Scholar 

  6. 6.

    Asakura Y, Uchida S (1984) Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system. J Nucl Sci Technol 21:381–392

    CAS  Article  Google Scholar 

  7. 7.

    Isomura S, Suzuki K, Shibuya M (1988) Separation and recovery of tritium by hydrogen–water isotopic exchange reaction. Fusion Technol 14:518–523

    CAS  Article  Google Scholar 

  8. 8.

    Koyanaka H, Miyatake H (2015) Extracting tritium from water using a protonic manganese oxide spinel. Sep Sci Technol 50:2142–2146

    CAS  Google Scholar 

  9. 9.

    Ooi K, Miyai Y, Katoh S (1986) Recovery of lithium from seawater by manganese oxide adsorbent. Sep Sci Technol 21:755–766

    CAS  Article  Google Scholar 

  10. 10.

    Shen X, Clearfield A (1986) Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J Solid State Chem 64:270–282

    CAS  Article  Google Scholar 

  11. 11.

    Ooi K, Miyai Y, Katoh S, Maeda H, Abe M (1989) Topotactic Li+ insertion to λ–MnO2 in the aqueous phase. Langmuir 5:150–157

    CAS  Article  Google Scholar 

  12. 12.

    Feng Q, Miyai Y, Kanoh H, Ooi K (1992) Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir 8:1861–1867

    CAS  Article  Google Scholar 

  13. 13.

    Tsumura T, Shimizu A, Inagaki M (1996) Lithium extraction/insertion from LiMn2O4—effect of crystallinity. Solid State Ionics 90:197–200

    CAS  Article  Google Scholar 

  14. 14.

    Sato K, Poojary DM, Clearfield A, Kohno M, Inoue Y (1997) The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties. J Solid State Chem 131:84–93

    CAS  Article  Google Scholar 

  15. 15.

    Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N (2003) Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. J Electroanal Chem 559:77–81

    CAS  Article  Google Scholar 

  16. 16.

    Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39:142–147

    CAS  Article  Google Scholar 

  17. 17.

    David WIF, Thackeray MM, De Picciotto LA, Goodenough JB (1987) Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4. J Solid State Chem 67:316–323

    CAS  Article  Google Scholar 

  18. 18.

    Ammundsen B, Jones DJ, Roziere J, Burns GR (1995) Mechanism of proton insertion and characterization of the proton sites in lithium manganate spinels. Chem Mater 7:2151–2160

    CAS  Article  Google Scholar 

  19. 19.

    Ammundsen B, Jones DJ, Roziere J, Berg H, Tellgren R, Thomas JO (1998) Ion exchange in manganese dioxide spinel: proton, deuteron, and lithium sites determined from neutron powder diffraction data. Chem Mater 10:1680–1687

    CAS  Article  Google Scholar 

  20. 20.

    Baǧci S, Tütüncü HM, Duman S, Bulut E, Özacar M, Srivastava GP (2014) Physical properties of the cubic spinel LiMn2O4. J Phys Chem Solids 75:63–469

    Google Scholar 

  21. 21.

    Palos AI, Anne M, Strobel P (2001) Topotactic reactions, structural studies, and lithium intercalation in cation-deficient spinels with formula close to Li2Mn4O9. J Solid State Chem 160:108–117

    CAS  Article  Google Scholar 

  22. 22.

    Howe JY, Rawn CJ, Jones LE, Ow H (2003) Improved crystallographic data for graphite. Powder Diffr 18:150–154

    CAS  Article  Google Scholar 

  23. 23.

    James GS (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  24. 24.

    Klug DD, Whalley E (1984) The uncoupled O–H stretch in ice VII. The infrared frequency and integrated intensity up to 189 kbar. J Chem Phys 81:1220–1228

    CAS  Article  Google Scholar 

  25. 25.

    Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsheftefür Chemie 130:1047–1059

    CAS  Google Scholar 

  26. 26.

    Koyanaka H, Ueda Y, Takeuchi K, Kolesnikov AI (2013) Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sens Actuators B 183:641–647

    CAS  Article  Google Scholar 

  27. 27.

    Fang CM, De Wijs GA (2006) Local structure and chemical bonding of protonated LixMn2O4 spinels from first principles. Chem Mater 18:1169–1173

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Koyanaka for advices on LiMn2O4 preparation, A. I. Kolesnikov for discussions about INS data, H. Miyatake for advices on LSC measurements, M. Tsujimoto for performing XANES measurements, and Oita Industrial Research Institute for assistance to take digital microscopic images. Y. Isozumi and M. Tosaki for acceptances of executing the experiments at Kyoto University. This work was financially supported by FORWARD SCIENCE LABORATORY LTD., partly supported by the Radioisotope Research Center of Kyoto University, the KAKENHI (Grant No. 21560800), and the WPI program operated by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideki Koyanaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 519 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koyanaka, H., Fukutani, S. Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide. J Radioanal Nucl Chem 318, 175–182 (2018). https://doi.org/10.1007/s10967-018-6022-y

Download citation

Keywords

  • Tritium
  • Separation
  • Extraction
  • Protonated manganese dioxide
  • Membrane