Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 175–182 | Cite as

Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide

  • Hideki KoyanakaEmail author
  • Satoshi Fukutani
Article
  • 138 Downloads

Abstract

This study shows a membrane containing a protonated manganese dioxide powder that is able to continually extract tritium from light water at room temperature. The method of using membrane-supplied protons through a proton conductive polymer film from acidic aqueous solution was remarkably effective at maintaining a continual extraction of tritium from light water, compared to the use of the protonated manganese dioxide powder alone. The extraction mechanism of tritium might be based on the prior oxidation of OT at the interface of protonated manganese dioxide and water via neutralization between H+/T+ and OH/OT.

Keywords

Tritium Separation Extraction Protonated manganese dioxide Membrane 

Notes

Acknowledgements

The authors thank Y. Koyanaka for advices on LiMn2O4 preparation, A. I. Kolesnikov for discussions about INS data, H. Miyatake for advices on LSC measurements, M. Tsujimoto for performing XANES measurements, and Oita Industrial Research Institute for assistance to take digital microscopic images. Y. Isozumi and M. Tosaki for acceptances of executing the experiments at Kyoto University. This work was financially supported by FORWARD SCIENCE LABORATORY LTD., partly supported by the Radioisotope Research Center of Kyoto University, the KAKENHI (Grant No. 21560800), and the WPI program operated by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary material

10967_2018_6022_MOESM1_ESM.docx (519 kb)
Supplementary material 1 (DOCX 519 kb)

References

  1. 1.
    Villani S (1976) Isotope separation. American Nuclear Society, La Grange ParkGoogle Scholar
  2. 2.
    Gould RF (1978) Separation of hydrogen isotopes. American Nuclear Society, La Grange ParkGoogle Scholar
  3. 3.
    Vasaru G (1993) Tritium isotope separation. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Devidson RB, VonHatten P, Schaub M, Ulrich D (1988) Commissioning and first operating experience at Darlington tritium removal facility. Fusion Technol 14:472–479CrossRefGoogle Scholar
  5. 5.
    Shimizu M, Kitamoto A, Takashima Y (1983) New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed. J Nucl Sci Technol 20:36–47CrossRefGoogle Scholar
  6. 6.
    Asakura Y, Uchida S (1984) Experimental evaluation of improved dual temperature hydrogen isotopic exchange reaction system. J Nucl Sci Technol 21:381–392CrossRefGoogle Scholar
  7. 7.
    Isomura S, Suzuki K, Shibuya M (1988) Separation and recovery of tritium by hydrogen–water isotopic exchange reaction. Fusion Technol 14:518–523CrossRefGoogle Scholar
  8. 8.
    Koyanaka H, Miyatake H (2015) Extracting tritium from water using a protonic manganese oxide spinel. Sep Sci Technol 50:2142–2146Google Scholar
  9. 9.
    Ooi K, Miyai Y, Katoh S (1986) Recovery of lithium from seawater by manganese oxide adsorbent. Sep Sci Technol 21:755–766CrossRefGoogle Scholar
  10. 10.
    Shen X, Clearfield A (1986) Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide. J Solid State Chem 64:270–282CrossRefGoogle Scholar
  11. 11.
    Ooi K, Miyai Y, Katoh S, Maeda H, Abe M (1989) Topotactic Li+ insertion to λ–MnO2 in the aqueous phase. Langmuir 5:150–157CrossRefGoogle Scholar
  12. 12.
    Feng Q, Miyai Y, Kanoh H, Ooi K (1992) Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir 8:1861–1867CrossRefGoogle Scholar
  13. 13.
    Tsumura T, Shimizu A, Inagaki M (1996) Lithium extraction/insertion from LiMn2O4—effect of crystallinity. Solid State Ionics 90:197–200CrossRefGoogle Scholar
  14. 14.
    Sato K, Poojary DM, Clearfield A, Kohno M, Inoue Y (1997) The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties. J Solid State Chem 131:84–93CrossRefGoogle Scholar
  15. 15.
    Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N (2003) Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. J Electroanal Chem 559:77–81CrossRefGoogle Scholar
  16. 16.
    Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39:142–147CrossRefGoogle Scholar
  17. 17.
    David WIF, Thackeray MM, De Picciotto LA, Goodenough JB (1987) Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4. J Solid State Chem 67:316–323CrossRefGoogle Scholar
  18. 18.
    Ammundsen B, Jones DJ, Roziere J, Burns GR (1995) Mechanism of proton insertion and characterization of the proton sites in lithium manganate spinels. Chem Mater 7:2151–2160CrossRefGoogle Scholar
  19. 19.
    Ammundsen B, Jones DJ, Roziere J, Berg H, Tellgren R, Thomas JO (1998) Ion exchange in manganese dioxide spinel: proton, deuteron, and lithium sites determined from neutron powder diffraction data. Chem Mater 10:1680–1687CrossRefGoogle Scholar
  20. 20.
    Baǧci S, Tütüncü HM, Duman S, Bulut E, Özacar M, Srivastava GP (2014) Physical properties of the cubic spinel LiMn2O4. J Phys Chem Solids 75:63–469Google Scholar
  21. 21.
    Palos AI, Anne M, Strobel P (2001) Topotactic reactions, structural studies, and lithium intercalation in cation-deficient spinels with formula close to Li2Mn4O9. J Solid State Chem 160:108–117CrossRefGoogle Scholar
  22. 22.
    Howe JY, Rawn CJ, Jones LE, Ow H (2003) Improved crystallographic data for graphite. Powder Diffr 18:150–154CrossRefGoogle Scholar
  23. 23.
    James GS (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Klug DD, Whalley E (1984) The uncoupled O–H stretch in ice VII. The infrared frequency and integrated intensity up to 189 kbar. J Chem Phys 81:1220–1228CrossRefGoogle Scholar
  25. 25.
    Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsheftefür Chemie 130:1047–1059Google Scholar
  26. 26.
    Koyanaka H, Ueda Y, Takeuchi K, Kolesnikov AI (2013) Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sens Actuators B 183:641–647CrossRefGoogle Scholar
  27. 27.
    Fang CM, De Wijs GA (2006) Local structure and chemical bonding of protonated LixMn2O4 spinels from first principles. Chem Mater 18:1169–1173CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Forward Science Laboratory Ltd.OitaJapan
  2. 2.Kyoto University Research Reactor InstituteKumatori, OsakaJapan

Personalised recommendations