Journal of Radioanalytical and Nuclear Chemistry

, Volume 318, Issue 1, pp 157–164 | Cite as

Development of rapid methodologies for uranium age dating

  • Matthew HigginsonEmail author
  • Chris Gilligan
  • Fiona Taylor
  • Darrell Knight
  • Philip Kaye
  • Thomas Shaw
  • Pamela Thompson


The measured model age is an important signature to constrain the production history of an unknown nuclear material. The aim of this work was to validate a rapid, robust quantification scheme for bulk uranium materials, amenable to multiple detection platforms. This work describes a combination of stacked columns, vacuum assisted separations, automation and a suite of analysis techniques to determine the ages of uranium materials and CRMs of known production history. The methodology allows for the determination of 234U/230Th and 235U/231Pa atom ratios via a novel approach, starting with a three resin column separation to allow high throughput and rapid turnaround. The materials analysed have concordant ages with known production histories, leading to the potential for expanding this work to additional chronometers, and the approach offers nuclear forensic practitioners an additional, advantageous separation methodology in the analysis of bulk uranium materials.


Radio-chronometry 234U/230Th 235U/231Pa Rapid separation Radiochemical separation Actinide analysis 



The research herein was funded and supported by AWE plc, UK. Paul Thompson, James Dunne and Nathan Thomas are thanked for help guiding this work.


  1. 1.
    Mayer K, Wallenius M, Ray I (2005) Nuclear forensics—a methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130:433–441CrossRefPubMedGoogle Scholar
  2. 2.
    Mayer K, Wallenius M, Varga Z (2012) Correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900CrossRefPubMedGoogle Scholar
  3. 3.
    Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I, Kinman W, Kristo M, Pointurier F, Spenser K, Stanley F, Steiner R, Tandon L, Williams R (2015) Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations. Appl Radiat Isot 103:81–86. CrossRefGoogle Scholar
  4. 4.
    Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J Radioanal Nucl Chem 302:399–411CrossRefGoogle Scholar
  5. 5.
    Varga Z, Venchiarutti C, Nicholl A, Krajko J, Jakobic R, Mayer K, Richter S, Aregbe Y (2015) IRMM-1000a and IRMM-1000b uranium reference materials certified for the production date. Part I: methodology, preparation and target characteristics. J Radioannal Nucl Chem 307:1077–1085. CrossRefGoogle Scholar
  6. 6.
    Varga Z, Nicholl A, Wallenius M, Mayer K (2016) Re-measurement of (234)U half-life. Anal Chem 88:2763–2769. CrossRefPubMedGoogle Scholar
  7. 7.
    Rolison JM, Treinen KC, McHugh KC et al (2017) J Radioanal Nucl Chem 314:2459. CrossRefGoogle Scholar
  8. 8.
    Nuclear Forensics International Technical Working Group (ITWG) Round Robin 3 Exercise after action and lessons learned report. Coordinator: Hanlan R (2010) Pacific Northwest National Laboratory, pp 78Google Scholar
  9. 9.
    Varga Z, Nicholl A, Wallenius M, Mayer K (2012) Development and validation of a methodology for uranium radiochronometry reference material preparation. Anal Chim Acta 718:25–31CrossRefPubMedGoogle Scholar
  10. 10.
    LaMont SP, Hall G (2005) Uranium age determination by measuring the 230Th/234U ratio. J Radioanal Nucl Chem 264:423–427CrossRefGoogle Scholar
  11. 11.
    Keegan RP, Gehrke RJ (2003) A method to determine the time since last purification of weapons grade plutonium. Appl Radiat Isot 59:137–143CrossRefPubMedGoogle Scholar
  12. 12.
    Jerome S, Collins S, Happel S, Ivanov P, Russell B (2017) Isolation and purification of protactinium-231. Appl Radiat Isot. CrossRefPubMedGoogle Scholar
  13. 13.
    Morgenstern A, Apostolidis C, Mayer Klaus (2002) Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal Chem 74:5513–5516. CrossRefPubMedGoogle Scholar
  14. 14.
    Wallenius M, Mayer K, Ray I (2006) Nuclear forensic investigations: two case studies. For Sci Int 156:55–62. CrossRefGoogle Scholar
  15. 15.
    Maxwell SL, Culligan BK, Hutchison J (2014) Rapid determination of actinides in asphalt samples. J Radioanal Nucl Chem 299:1891–1901. CrossRefGoogle Scholar
  16. 16.
    Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron (II) sulphate as reductant. Talanta 11:1203–1211CrossRefGoogle Scholar
  17. 17.
    Kayzar TM, Williams RW (2016) Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. J Radioanal Nucl Chem 302:2061–2068CrossRefGoogle Scholar
  18. 18.
    Rolison J, Treinen C, McHugh K, Gaffney A, Williams R (2017) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem 314:2459–2467. CrossRefGoogle Scholar
  19. 19.
    Nuclear Forensics International Technical Working Group (ITWG) Collaborative materials exchange exercise after action and lessons learned report 4. Coordinator: Schwantes J (29/10/2015) Pacific Northwest National Laboratory. PNNL-24410Google Scholar
  20. 20.
    Nuclear Forensics International Technical Working Group (ITWG) Round Robin 3 Exercise after action and lessons learned report 3. Coordinator: Hanlen R (25/04/2011), Pacific Northwest National Laboratory. PNNL-20079Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Matthew Higginson
    • 1
    Email author
  • Chris Gilligan
    • 1
  • Fiona Taylor
    • 1
  • Darrell Knight
    • 1
  • Philip Kaye
    • 1
  • Thomas Shaw
    • 1
  • Pamela Thompson
    • 1
  1. 1.AWEAldermaston, ReadingUK

Personalised recommendations