Skip to main content
Log in

Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The carboxyl-modified multiwalled carbon nanotubes were immobilized in chitosan-based composite membranes (CS-CNTs) which were used as efficient sorbents for U(VI) sorption. The incorporation of CNTs in the CS-CNTs membranes improves their mechanical strength as well as U(VI) sorption performance. XPS analysis indicates that both amine and carboxyl groups are responsible for the complexation of U(VI). The sorption kinetics followed the pseudo-second order equation, whereas the sorption isotherms fitted well with Langmuir model (qm = 126.7 mg g−1 at 298 K). Moreover, the U(VI)-loaded CS-CNT8 can be effectively desorbed by 0.2 M acidified EDTA and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Galhoum AA, Mahfouz MG, Gomaa NM, Vincent T, Guibal E (2015) Uranium (VI) sorption using functionalized-chitosan magnetic nanobased particles. Adv Mater Res 1130:499–502

    Article  Google Scholar 

  2. Xu J, Chen M, Zhang C, Yi Z (2013) Sorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298:1375–1383

    Article  CAS  Google Scholar 

  3. Ahmad M, Manzoor K, Ikram S (2017) Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review. Int J Biol Macromol 105:190–203

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee C, Dudwadkar N, Tripathi SC, Gandhi PM, Grover V, Kaushik CP, Tyagi AK (2014) Nano-cerium vanadate a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70

    Article  CAS  PubMed  Google Scholar 

  5. Yuan L, Sun M, Liao X, Zhao Y, Chai Z, Shi W (2014) Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Sci China Chem 57:1432–1438

    Article  CAS  Google Scholar 

  6. Shariful MI, Sharif SB, Lee J, Habiba U, Ang BC, Amalina MA (2017) Sorption of divalent heavy metal ions by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr Polym 157:57–64

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Kuo Y (2007) Preparation of fructose-mediated (polyethylene glycol/chitosan) membrane and sorption of heavy metal ions. J Appl Polym Sci 105:1480–1489

    Article  CAS  Google Scholar 

  8. WanNgah WS, Teong LC, Hanafiah M (2011) Sorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  9. Premakshi H, Ramesh K, Kariduraganavar M (2015) Modification of crosslinked chitosan membrane using NaY zeolite for pervaporation separation of water–isopropanol mixtures. Chem Eng Res Des 94:32–43

    Article  CAS  Google Scholar 

  10. Seo S, Kim J, Lee J, Shin U, Lee E (2014) Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized carbon nanotube incorporation. Compos Sci Technol 96:31–37

    Article  CAS  Google Scholar 

  11. Fan J, Shi Z, Ge Y, Wang Y, Wang J, Yin J (2012) Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides. Polymer 53:657–664

    Article  CAS  Google Scholar 

  12. Huang B, Liu M, Zhou C (2017) Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydr Polym 175:689–698

    Article  CAS  PubMed  Google Scholar 

  13. Janegitz B, Figueiredo-Filho L, Marcolino-Junior L, Souza S, Pereira-Filho E, Fatibello-Filho O (2011) Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination. J Electroanal Chem 660:209–216

    Article  CAS  Google Scholar 

  14. Ahmed A, Habis A, Long D, Marc P (2017) Synthesis and characterization of MWNT/chitosan and MWNT/chitosan crosslinked bulky paper membranes for desalination. Desalination 418:60–70

    Article  CAS  Google Scholar 

  15. Huang Y, Lee X, Macazo F, Grattieri M, Cai R, Minteer SD (2018) Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. Chem Eng J 339:259–267

    Article  CAS  Google Scholar 

  16. Salehi E, Madaeni S, Rajabi L, Derakhshan AA, Daraei S, Vatanpour V (2013) Static and dynamic sorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chem Eng 2156:791–801

    Article  CAS  Google Scholar 

  17. Bruggen B (2012) The separation power of nanotubes in membranes: a review. ISRN Nanotechnol 202:1–17

    Article  CAS  Google Scholar 

  18. Hinds B, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  CAS  PubMed  Google Scholar 

  19. Stafiej A, Pyrzynska K (2007) Sorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  20. Kathi J, Rhee KY, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos A 40:800–809

    Article  CAS  Google Scholar 

  21. Borsagli F, Mansur A, Chagas P, Oliveira L, Mansur H (2015) O-carboxymethyl functionalization of chitosan: complexation and sorption of Cd (II) and Cr(VI) as heavy metal pollutant ions. React Funct Polym 97:37–47

    Article  CAS  Google Scholar 

  22. Li S, Gong Y, Yang Y, He H, Hu L, Zhu L (2015) Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem Eng J 260:231–239

    Article  CAS  Google Scholar 

  23. Choi C, Kim S, Pak P, Yoo D, Chung Y (2007) Effect of N-acylationon structure and properties of chitosan fibers. Carbohydr Polym 68:122–127

    Article  CAS  Google Scholar 

  24. Kam H, Khor E, Lim L (1999) Storage of partially deacetylated chitosan films. J Biomed Mater Res 48:881–888

    Article  CAS  PubMed  Google Scholar 

  25. Brugnerotto J, Lizardi J, Goycoolea F, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 423:569–3580

    Google Scholar 

  26. Vodolazov L, Shatalov V, Molchanova T, Peganov V (2001) Polymerization of uranyl ions and its role in ion-exchange extraction of uranium. At Energy 90:213–217

    Article  CAS  Google Scholar 

  27. Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y (2016) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455

    Article  CAS  Google Scholar 

  28. Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS FT-IR and SEM study. J Biomat Sci-Polym E 16:1575–1593

    Article  CAS  Google Scholar 

  29. Dambies L, Guimon C, Yiacoumi S, Guibal E (2001) Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloid Surf A 177:203–214

    Article  CAS  Google Scholar 

  30. Galhoum AA, Atia AA, Mahfouz MG, Abdel-Rehem ST, Gomaa NA, Vincent T (2015) Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. J Mater Sci 50:2832–2848

    Article  CAS  Google Scholar 

  31. Zhou L, Li Z, Zeng K, Chen Q, Wang Y, Liu Z, Adesoji A (2017) Immobilization of in situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. J Radioanal Nucl Chem 314:467–476

    Article  CAS  Google Scholar 

  32. Zhao Y, Wang X, Li J, Wang X (2015) Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polym Chem 6:5376–5384

    Article  CAS  Google Scholar 

  33. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) sorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  34. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229:321–330

    Article  CAS  PubMed  Google Scholar 

  35. Fasfous I, Dawoud J (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440

    Article  CAS  Google Scholar 

  36. Shao D, Hu J, Wang X (2010) Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO2 2+, Cu2+, and Pb2+ from aqueous solutions. Plasma Process Polym 7:977–985

    Article  CAS  Google Scholar 

  37. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective sorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104:150–155

    Article  CAS  Google Scholar 

  38. Sureshkumar MK, Das D, Mallia MB, Gupta P (2010) Sorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  PubMed  Google Scholar 

  39. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Sorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (21366001; 21667001; 21601033), the Key Research and Development Program and the Natural Science Fund Program of Jiangxi Province (20161BBF60059; S2017ZRMSB0473; 20172BCB22020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhou or Zhirong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, J., Wang, Y., Li, T. et al. Immobilization of carboxyl-modified multiwalled carbon nanotubes in chitosan-based composite membranes for U(VI) sorption. J Radioanal Nucl Chem 317, 1419–1428 (2018). https://doi.org/10.1007/s10967-018-5993-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5993-z

Keywords

Navigation