Skip to main content
Log in

Characteristics of ozone as an oxidant for actinides in alkaline solutions and the mechanism of possible reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper addresses the oxidative characteristics of ozone and the possibility to obtain actinides in highest oxidation states. Mechanisms of direct and indirect oxidation of actinides by ozone are discussed. In alkaline solutions, the ozonide ion radical O3 acts as a strong oxidizing agent and its potential is 1.482 V. The optimal conditions for the formation of actinides in highest oxidation states include concentrated alkaline solutions and low temperatures (− 30 °C or lower), which markedly increases their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Krot NN, Gel’man AD, Mefod’eva MP, Shilov VP, Peretrukhin VF, Spitsyn VI (1977) Semivalentnoe Sostoyanie Neptuniya, Plutoniya, Ameritsiya (The heptavalent state of neptunium, plutonium, and americium). Nauka, Moscow

    Google Scholar 

  2. Krot NN, Gel’man AD (1967) Production of neptunium and plutonium in heptavalent state. Dokl Akad Nauk SSSR 177:124–126

    CAS  Google Scholar 

  3. Krot NN, Shilov VP, Nikolaevskii VB, Pikaev AK, Gel’man AD, Spitsyn VI (1974) Production of americium in septivalent state. Dokl Akad Nauk SSSR 217:589–592

    CAS  Google Scholar 

  4. Nikolaevskii VB, Shilov VP, Krot NN, Peretrukhin VF (1975) Relationship of the electronic absorption spectra of hexa- and heptavalent actinide elements in an alkaline solution to their redox potentials. Radiokhimiya 17:426–430

    CAS  Google Scholar 

  5. Krot NN, Gel’man AD, Zakharova FA, Peretrukhin VF, Pikaev AK (1972) On the problem of possibility plutonium (VIII) preparation. Radiokhimiya 14:890–892

    CAS  Google Scholar 

  6. Nikonov MV, Gogolev AV, Tananaev IG, Myasoedov BF (2004) On the highest oxidation states of plutonium in alkali solutions in the presence of ozone. Radiochemistry 46:340–342

    Article  CAS  Google Scholar 

  7. Tananaev IG, Nikonov MV, Myasoedov BF, Clark DL (2007) Plutonium in higher oxidation states in alkaline media. J Alloys Compd 444–445:668–672

    Article  CAS  Google Scholar 

  8. Nikonov MV, Myasoedov BF (2014) A spectrophotometric study of the reduction of Pu(VIII) and Pu(VII) in alkaline solutions. Radiochemistry 56:227–234

    Article  CAS  Google Scholar 

  9. Antonio MR, Williams CW, Sullivan JA, Skanthakumar S, Hu YJ, Soderholm L (2012) Preparation, stability, and structural characterization of plutonium(VII) in alkaline aqueous solution. Inorg Chem 51:5274–5281

    Article  CAS  PubMed  Google Scholar 

  10. Peretrukhin VF, Delegard K, Shilov VP (2013) The XIII international workshop fundamentals of plutonium. Russian Federation. Sarov. September 9–13:284–288

  11. Bader H, Holgne J (1982) Determination of ozone in water by the indigo method; a submitted standard method. Ozone Sci Eng 4:169–176

    Article  CAS  Google Scholar 

  12. Ershov BG, Morozov PA, Gordeeev AV (2012) Effect of silver and copper ions on the decomposition of ozone in water. Russ J Phys Chem A 86:1795–1799

    Article  CAS  Google Scholar 

  13. Staehelin J, Hoigne J (1982) Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Tech. 16:676–681

    Article  CAS  Google Scholar 

  14. Sehested K, Holcman J, Bjergbakke E, Hart EJ (1982) Ultraviolet spectrum and decay of the ozonide ion radical, O3 , in strong alkaline solution. J Phys Chem 86:2066–2069

    Article  CAS  Google Scholar 

  15. Forni L, Bahnemann D, Hart EJ (1982) Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution. J Phys Chem 86:255–259

    Article  CAS  Google Scholar 

  16. Ershov BG, Morozov PA (2009) The kinetics of ozone decomposition in water, the influence of pH and temperature. Russ J Phys Chem A 83:1295–1299

    Article  CAS  Google Scholar 

  17. Shilov VP, Fedoseev AM, Ershov BG (2012) Mechanism of Np(VI) oxidation with ozone in alkaline solutions. Radiochemistry. 54:324–329

    Article  CAS  Google Scholar 

  18. Bratsch SG (1989) Standard electrode potentials and temperature coefficients in water at 298.15 K. J Phys Chem Ref Data 18(1):1–21

    Article  CAS  Google Scholar 

  19. Huie RE, Cliffton CL, Neta P (1991) Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int J Radiat Appl Instrum C Radiat Phys Chem. 38:477–481

    CAS  Google Scholar 

  20. Ermakov VS, Peretrukhin VF, Krot NN (1977) On the behaviour of hepta and hexavalent neptunium in lithium hydroxide solutions. Radiokhimiya 19:324–327

    CAS  Google Scholar 

  21. Peretrukhin VF, Krot NN, Gelman AD (1972) Formal potentials of the couple Np(VII)/Np(VI) and Pu(VII)/Pu(VI) in aqueous solutions with a high concentration of alkali. Radiokhimiya 17:72–77

    Google Scholar 

  22. Klaning UK, Sahested K, Holcman J (1985) Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction chlorite (ClO2-) + ozone.dblarw. ozone(1-) + chlorine dioxide. J Phys Chem 89:760–763

    Article  CAS  Google Scholar 

  23. Shilov VP, Gogolev AV, Fedoseev AM (2015) Estimation of the rate constants of the Pu(VI) + O3-reaction in alkaline solutions. Radiochemistry 57:395–397

    Article  CAS  Google Scholar 

  24. Shilov VP, Gogolev AV, Fedosseev AM, Ershov BG (2016) The mechanism of Pu(VI) oxidation with ozone and other reagents in alkaline solutions. Russ Chem Bull 65:2351–2354

    Article  CAS  Google Scholar 

  25. Nikolaevskii VB, Shilov VP (2013) Extreme oxidation states of americium. Radiochemistry. 55:261–263

    Article  CAS  Google Scholar 

  26. Gusev YK, Peretrukhin VF, Shilov VP, Kirin IS (1972) Difluoride xenon effect on neptunium and plutonium aqueous solutions in different oxidative states. Radiokhimiya 14:888–890

    CAS  Google Scholar 

  27. Peretrukhin VF, Krot NN, Gel’man AD (1972) Action of elementary fluorine on the higher oxidative states of plutonium and neptunium in water alkaline solutions. Radiokhimiya 14:633–634

    CAS  Google Scholar 

  28. Tsushima S (2008) Theoretical study on the highest oxidation states of Pu. Plutonium Futures/The Science Abstracts Booklet, Dijon, p 245

    Google Scholar 

  29. Gogolev AV, Fedosseev AM, Moisy P (2012) The influence of f-elements’ oxidizing potential and ion charge on their stability in aqueous alkaline solution. Radiochim Acta 100:1–3

    Article  CAS  Google Scholar 

  30. Gorbenko-Germanov DS, Kozlova IV (1973) Mechanism of the decomposition of ozone in basic aqueous media. Dokl Akad Nauk SSSR Ser Khim. 210:851–855

    CAS  Google Scholar 

  31. Ershov BG, Panich NM (2015) The solubility and decomposition of ozone in solutions of sulfuric and perchloric acids in the temperature range from 25 to − 70°C. Dokl Phys Chem 465:279–282

    Article  CAS  Google Scholar 

  32. Noyes AA, Coryell CD, Stitt F, Kossiakoff A (1937) Argentic salts in acid solution. J Am Chem Soc 59:1316–1325

    Article  CAS  Google Scholar 

  33. Hoigne J, Bader H, Haag WR, Staehelin J (1985) Rate constants of reactions of ozone with organic and inorganic compounds in water. J Water Res. 19:993–1004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks N. Panich for her assistance in preparing the manuscript. This work was financially supported by the Russian Foundation for Basic research, Project No. 16-03-00336 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Grigor’evich Ershov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, B.G. Characteristics of ozone as an oxidant for actinides in alkaline solutions and the mechanism of possible reactions. J Radioanal Nucl Chem 317, 1059–1064 (2018). https://doi.org/10.1007/s10967-018-5980-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5980-4

Keywords

Navigation