Skip to main content
Log in

Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We evaluated the effectiveness of bioleaching uranium from a low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous iron-oxidizing bacteria, Acidithiobacillus ferrooxidans, isolated from local uranium ore. The effects of initial acidity, pulp density and ferrous ion concentration of the feed solution were investigated. The uranium (U3O8) content was 0.036% by weight. Using uranium ore acidified leachate as medium with initial ferrous ion concentrations of 3 g/L, pH 1.7 and pulp density of 20% as optimal conditions, the maximum rate of dissolved uranium recovery was 85.14%. This approach is thus, suitable for recovering uranium from low-grade CSA ore using bacterial leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu M, Yang S, Shao F (2012) Characteristics and resource potential of carbonaceous-siliceous-argillitic rock-hosted uranium depositis in xiushui area. J East China Inst Technol 35(2):129–135

    Article  CAS  Google Scholar 

  2. Zhao F (2012) An review on geology study of carbonaceous-siliceous-pelitic rock type uranium deposit in China and the strategy for its development. Uranium Geol 25(2):91–97

    Google Scholar 

  3. Bhargava SK, Ram R, Pownceby M, Grocott S, Ring B, Tardio J, Jones L (2015) A review of acid leaching of uraninite. Hydrometallurgy 151:10–24

    Article  CAS  Google Scholar 

  4. Gilligan R, Nikoloski AN (2015) The extraction of uranium from brannerite: a literature review. Miner Eng 71:34–48

    Article  CAS  Google Scholar 

  5. Li YC, Min XB, Chai LY, Shi MQ, Tang CJ, Wang QW, Liang YJ, Lei J, Liyang WJ (2016) Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J Environ Manag 181:756–761

    Article  CAS  Google Scholar 

  6. Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen C, Hayat T, Alsaedi A, Wang X (2017) Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem Eng J 310:292–299

    Article  CAS  Google Scholar 

  7. Peng B, Tang X, Yu C, Xie S, Xiao M, Song Z, Tu X (2008) Heavy metal geochemistry of the acid mine drainage discharged from the Hejiacun uranium mine in central Hunan. China Environ Geol 57(2):421–434

    Article  CAS  Google Scholar 

  8. Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12

    Article  CAS  Google Scholar 

  9. Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19(2):119–132

    Article  CAS  PubMed  Google Scholar 

  10. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  11. Choi M-S, Cho K-S, Kim D-S, Ryu H-W (2005) Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 21(3):377–380

    Article  CAS  Google Scholar 

  12. Renman R, Jiankang W, Jinghe C (2006) Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy 83(1–4):77–82

    Article  CAS  Google Scholar 

  13. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012) Insights into heap bioleaching of low grade chalcopyrite ores: a pilot scale study. Hydrometallurgy 125–126:157–165

    Article  CAS  Google Scholar 

  14. Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegrad 62(2):109–115

    Article  CAS  Google Scholar 

  15. de Souza AD, Pina PS, Leão VA (2007) Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner Eng 20(6):591–599

    Article  CAS  Google Scholar 

  16. Ke Y, Peng N, Xue K, Min X, Chai L, Pan Q, Liang Y, Xiao R, Wang Y, Tang C, Liu H (2018) Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl Surf Sci 435:1011–1019

    Article  CAS  Google Scholar 

  17. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. In: Schippers A, Glombitza F, Sand W (eds) Geobiotechnology I, vol 141. Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–47

    Google Scholar 

  18. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258

    Article  CAS  Google Scholar 

  19. Umanskii A, Klyushnikov A (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295(1):151–156

    Article  CAS  Google Scholar 

  20. Rashidi A, Roosta-Azad R, Safdari SJ (2014) Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nucl Chem 301(2):341–350

    Article  CAS  Google Scholar 

  21. Li Q, Sun J, Ding D, Wang Q, Shi W, Hu E, Wang X, Jiang X (2017) Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 314(3):1939–1946

    Article  CAS  Google Scholar 

  22. Gan M, Jie S, Li M, Zhu J, Liu X (2015) Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Mar Pollut Bull 97(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  23. Gan M, Zhou S, Li M, Zhu J, Liu X, Chai L (2015) Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium. Environ Sci Pollut Res Int 22(8):5807–5816

    Article  CAS  PubMed  Google Scholar 

  24. Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184(1–3):812–818

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141:162–168

    Article  CAS  PubMed  Google Scholar 

  26. Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164(2–3):1152–1158

    Article  CAS  PubMed  Google Scholar 

  27. Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresour Technol 102(7):4697–4702

    Article  CAS  PubMed  Google Scholar 

  28. Liu DG, Min XB, Ke Y, Chai LY, Liang YJ, Li YC, Yao LW, Wang ZB (2018) Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Environ Sci Pollut Res Int 25(8):7600–7607

    Article  CAS  PubMed  Google Scholar 

  29. Abhilash SS, Mehta KD, Kumar V, Pandey BD, Pandey VM (2009) Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy 95(1–2):70–75

    Article  CAS  Google Scholar 

  30. Muñoz JA, Ballester A, González F, Blázquez ML (1995) A study of the bioleaching of a Spanish uranium ore. Part II: orbital shaker experiments. Hydrometallurgy 38(1):59–78

    Article  Google Scholar 

  31. Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50(1):70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H-d P, H-y Y, L-l T, C-b Z, Y-s Z (2012) Control method of chalcopyrite passivation in bioleaching. Trans Nonferr Met Soc China 22(9):2255–2260

    Article  CAS  Google Scholar 

  33. Xiong X-x G, G-h BJ-r, S-k L (2015) Bioleaching and electrochemical property of marmatite by Sulfobacillus thermosulfidooxidans. Trans Nonferr Met Soc China 25(9):3103–3110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (51564001, 41772266, 51764001), the Natural Science Foundation of Jiangxi Province (20161BAB213091, 20171BAB213019) and Project of State Key Laboratory Breeding Base of Nuclear Resources and Environment Fundamental Science (Z1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, P., Liu, Y. et al. Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nucl Chem 317, 1033–1040 (2018). https://doi.org/10.1007/s10967-018-5957-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5957-3

Keywords

Navigation