Excitation functions of 93Nb(p,x) reactions from threshold to 42.5 MeV


The excitation functions of 93Nb(p,x) reactions from their respective thresholds to 42.5 MeV were measured at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences by using the stacked-foil activation and off-line γ-ray spectrometric technique. The thick target integral yields for the formation of the investigated radionuclides from the respective thresholds to 42.5 MeV were deduced based on the measured cross sections data. The 93Nb(p,x) reactions cross sections obtained in the present work were compared with the literature data and theoretical values based on the TENDL-2015 data library. The production cross sections of the investigated radionuclides (e.g. 88,89Zr, 87,88Y, 90Nb) are applicable in research, medical diagnosis and radiotherapy. The present data provide information’s, which will support in testing and understanding the nuclear reaction models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Steinberg EP (1961) The Radiochemistry of the Niobium and Tantalum, NAS-NS 3039, National Research Council, Argonne National Laboratory

  2. 2.

    Antoine C, Foley M, Dhanaraj N (2006) Physical properties of niobium and specification of superconducting cavities, Technical Division Note, TD-06-048, Fermi National Accelerator Laboratory

  3. 3.

    Sgouros G (1998) Med Phys 25:1487

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Busse S, Rösch F, Qaim SM (2002) Radiochim Acta 90:1

    Article  CAS  Google Scholar 

  5. 5.

    Verel I, Visser GWM, Boellaard R, Walsum MS, Snow GB, Dongen GAMS (2003) J Nucl Med 44:1271

    CAS  PubMed  Google Scholar 

  6. 6.

    Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Otuka N (2012) Nucl Instrum Methods B 271:72

    Article  CAS  Google Scholar 

  7. 7.

    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2005) Appl Radiat Isot 63:367

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2007) Radiochim Acta 95:187

    CAS  Article  Google Scholar 

  9. 9.

    Ditrói F, Takács S, Tárkányi F, Baba M, Corniani E, Shubin YN (2008) Nucl Instrum Methods B 266:5087

    Article  CAS  Google Scholar 

  10. 10.

    Ditrói F, Hermanne A, Corniani E, Takács S, Tárkányi F, Csikai J, Shubin YN (2009) Nucl Instrum Methods B 267:336

    Article  CAS  Google Scholar 

  11. 11.

    Blaser JP, Boehm F, Marmier P, Sherrer P (1951) Helv Phys Acta 24:441

    CAS  Google Scholar 

  12. 12.

    Avila-Rodriguez MA, Wilson JS, Schueller MJ, McQuarrie SA (2008) Nucl Instrum Methods B 266:3353

    Article  CAS  Google Scholar 

  13. 13.

    Kiselev BG, Faizrakhmanova FR (1974) 24th Conference on Nucl Spect and Nucl Struct, Kharkov, p 356

  14. 14.

    Singh BP, Sharma MK, Musthafa MM, Bhardwaj HD, Prasad R (2006) Nucl Instrum Methods A 562:717

    Article  CAS  Google Scholar 

  15. 15.

    Levkovskii VN (1991) middle mass nuclides (A = 40–100) activation cross sections by medium energy (E = 10–50 MeV) Protons and γ-Particles (experiment and systematics), Inter-Vesi Moscow

  16. 16.

    Steyn GF, Vermeulen C, Szélecsényi F, Kovács Z, Suzuki K, Fukumura T, Nagatsu K (2011) J Korean Phys Soc 59:1991

    Article  CAS  Google Scholar 

  17. 17.

    Albouy G, Cohen JP, Gusakow M, Poffe N, Sergolle H, Valentin L (1963) J Phys Radium 24:67

    Article  CAS  Google Scholar 

  18. 18.

    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA, Pavlov KV, Florya SN, Tikhonov RS, Zhivun VM, Ignatyuk AV, Mashnik SG, Leray S, Boudard A, Cugnon J, Mancusi D, Yariv Y, Nishihara K, Matsuda N, Kumawat H, Mank G, Gudowski W (2011) Phys At Nucl 74:537

    Article  CAS  Google Scholar 

  19. 19.

    Michel R, Bodemann R, Busemann H, Daunke R, Gloris M, Lange HJ, Klug B, Krins A, Leya I, Lüepke M, Neumenn S, Reinhardt H, Büettgen MS, Herpers U, Schiekel TH, Sudbrock F, Holmqvist B, Condé H, Malmborg P, Suter M, Hannen BD, Kubik PW, Sinal HA, Filges D (1997) Nucl Instrum Methods Phys 129:153

    Article  CAS  Google Scholar 

  20. 20.

    James RA (1954) Phys Rev 98:288

    Article  Google Scholar 

  21. 21.

    Forsthoff CW, Goeckermann RH, Naumann RA (1953) Phys Rev 90:1004

    Article  CAS  Google Scholar 

  22. 22.

    Rizvi IA, Kumar K, Ahmad T, Agarwal A, Chaubey AK (2012) Ind J Phys 86:913

    Article  CAS  Google Scholar 

  23. 23.

    Koning AJ, Rochman D, Kopecky J, Sublet JCH, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest R, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R. TENDL-2015: TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2015/tendl2015.html

  24. 24.

    Ziegler JF (2004) Nucl Instrum Methods B 219–220:1027. http://www.srim.org/

  25. 25.

    Shahid M, Kim K, Naik H, Zaman M, Yang SC, Kim GN (2015) Nucl Instrum Methods B 342:305

    Article  CAS  Google Scholar 

  26. 26.

    Kim K, Khandaker MU, Naik H, Kim GN (2014) Nucl Instrum Methods B 322:63

    Article  CAS  Google Scholar 

  27. 27.

    Shahid M, Kim K, Naik H, Kim GN (2014) Nucl Instrum Methods B 322:13

    Article  CAS  Google Scholar 

  28. 28.

    Qaim SM, Tárkányi F, Obloẑinskỳ P, Gul K, Hermanne A, Mustafa MG, Nortier FM, Scholten B, Shubin Y, Takács S, Zhuang Y (2001) Charged Particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211, Vienna, Data updated in January 2007. https://www-nds.iaea.org/medical/

  29. 29.

    Gilmore G, Hemingway JD (1995) Practical gamma-ray spectrometry (chapter 1). Wiley, Amsterdam, p 17

    Google Scholar 

  30. 30.

    National Nuclear Data Center. Nuclear structure and decay data (NuDat 2.6). http://www.nndc.bnl.gov/nudat2/

  31. 31.

    Firestone RB, Ekström LP (2004) WWW table of radioactive isotopes, Ver. 2.1, Jan. 2004. http://ie.lbl.gov/toi

  32. 32.

    Audi G, Wapstra AH (1995) Nucl Phys A 595:409

    Article  Google Scholar 

  33. 33.

    Qtool: calculation of reaction Q-values and thresholds, Los Alamos National Laboratory (2011). http://t2.lanl.gov/nis/data/qtool.html

  34. 34.

    Yang SC, Kim K, Song TY, Lee YO, Kim GN (2015) Nucl Instrum Methods B 362:142

    Article  CAS  Google Scholar 

Download references


The authors are thankful to the staff of the medical cyclotron at Korea Institute of Radiological and Medical Science (KIRAMS) for providing the proton beam to carry out the experiments. This research was supported by the Kyungpook National University Fund, 2017.

Author information



Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Kim, G., Shahid, M. et al. Excitation functions of 93Nb(p,x) reactions from threshold to 42.5 MeV. J Radioanal Nucl Chem 317, 1021–1031 (2018). https://doi.org/10.1007/s10967-018-5949-3

Download citation


  • 93Nb(p,x) reactions
  • 42.5-MeV proton beam
  • MC-50 cyclotron
  • Stacked-foil activation technique
  • Off-line γ-ray spectrometry
  • Excitation functions
  • Integral yield