Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 317, Issue 2, pp 1021–1031 | Cite as

Excitation functions of 93Nb(p,x) reactions from threshold to 42.5 MeV

  • Kwangsoo Kim
  • Guinyun KimEmail author
  • Muhammad Shahid
  • Muhammad Zaman
  • Sung-Chul Yang
  • Md. Shuza Uddin
  • Haladhra Naik
Article
  • 81 Downloads

Abstract

The excitation functions of 93Nb(p,x) reactions from their respective thresholds to 42.5 MeV were measured at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences by using the stacked-foil activation and off-line γ-ray spectrometric technique. The thick target integral yields for the formation of the investigated radionuclides from the respective thresholds to 42.5 MeV were deduced based on the measured cross sections data. The 93Nb(p,x) reactions cross sections obtained in the present work were compared with the literature data and theoretical values based on the TENDL-2015 data library. The production cross sections of the investigated radionuclides (e.g. 88,89Zr, 87,88Y, 90Nb) are applicable in research, medical diagnosis and radiotherapy. The present data provide information’s, which will support in testing and understanding the nuclear reaction models.

Keywords

93Nb(p,x) reactions 42.5-MeV proton beam MC-50 cyclotron Stacked-foil activation technique Off-line γ-ray spectrometry Excitation functions Integral yield 

Notes

Acknowledgements

The authors are thankful to the staff of the medical cyclotron at Korea Institute of Radiological and Medical Science (KIRAMS) for providing the proton beam to carry out the experiments. This research was supported by the Kyungpook National University Fund, 2017.

References

  1. 1.
    Steinberg EP (1961) The Radiochemistry of the Niobium and Tantalum, NAS-NS 3039, National Research Council, Argonne National LaboratoryGoogle Scholar
  2. 2.
    Antoine C, Foley M, Dhanaraj N (2006) Physical properties of niobium and specification of superconducting cavities, Technical Division Note, TD-06-048, Fermi National Accelerator LaboratoryGoogle Scholar
  3. 3.
    Sgouros G (1998) Med Phys 25:1487CrossRefPubMedGoogle Scholar
  4. 4.
    Busse S, Rösch F, Qaim SM (2002) Radiochim Acta 90:1CrossRefGoogle Scholar
  5. 5.
    Verel I, Visser GWM, Boellaard R, Walsum MS, Snow GB, Dongen GAMS (2003) J Nucl Med 44:1271PubMedGoogle Scholar
  6. 6.
    Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Otuka N (2012) Nucl Instrum Methods B 271:72CrossRefGoogle Scholar
  7. 7.
    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2005) Appl Radiat Isot 63:367CrossRefPubMedGoogle Scholar
  8. 8.
    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2007) Radiochim Acta 95:187CrossRefGoogle Scholar
  9. 9.
    Ditrói F, Takács S, Tárkányi F, Baba M, Corniani E, Shubin YN (2008) Nucl Instrum Methods B 266:5087CrossRefGoogle Scholar
  10. 10.
    Ditrói F, Hermanne A, Corniani E, Takács S, Tárkányi F, Csikai J, Shubin YN (2009) Nucl Instrum Methods B 267:336CrossRefGoogle Scholar
  11. 11.
    Blaser JP, Boehm F, Marmier P, Sherrer P (1951) Helv Phys Acta 24:441Google Scholar
  12. 12.
    Avila-Rodriguez MA, Wilson JS, Schueller MJ, McQuarrie SA (2008) Nucl Instrum Methods B 266:3353CrossRefGoogle Scholar
  13. 13.
    Kiselev BG, Faizrakhmanova FR (1974) 24th Conference on Nucl Spect and Nucl Struct, Kharkov, p 356Google Scholar
  14. 14.
    Singh BP, Sharma MK, Musthafa MM, Bhardwaj HD, Prasad R (2006) Nucl Instrum Methods A 562:717CrossRefGoogle Scholar
  15. 15.
    Levkovskii VN (1991) middle mass nuclides (A = 40–100) activation cross sections by medium energy (E = 10–50 MeV) Protons and γ-Particles (experiment and systematics), Inter-Vesi MoscowGoogle Scholar
  16. 16.
    Steyn GF, Vermeulen C, Szélecsényi F, Kovács Z, Suzuki K, Fukumura T, Nagatsu K (2011) J Korean Phys Soc 59:1991CrossRefGoogle Scholar
  17. 17.
    Albouy G, Cohen JP, Gusakow M, Poffe N, Sergolle H, Valentin L (1963) J Phys Radium 24:67CrossRefGoogle Scholar
  18. 18.
    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA, Pavlov KV, Florya SN, Tikhonov RS, Zhivun VM, Ignatyuk AV, Mashnik SG, Leray S, Boudard A, Cugnon J, Mancusi D, Yariv Y, Nishihara K, Matsuda N, Kumawat H, Mank G, Gudowski W (2011) Phys At Nucl 74:537CrossRefGoogle Scholar
  19. 19.
    Michel R, Bodemann R, Busemann H, Daunke R, Gloris M, Lange HJ, Klug B, Krins A, Leya I, Lüepke M, Neumenn S, Reinhardt H, Büettgen MS, Herpers U, Schiekel TH, Sudbrock F, Holmqvist B, Condé H, Malmborg P, Suter M, Hannen BD, Kubik PW, Sinal HA, Filges D (1997) Nucl Instrum Methods Phys 129:153CrossRefGoogle Scholar
  20. 20.
    James RA (1954) Phys Rev 98:288CrossRefGoogle Scholar
  21. 21.
    Forsthoff CW, Goeckermann RH, Naumann RA (1953) Phys Rev 90:1004CrossRefGoogle Scholar
  22. 22.
    Rizvi IA, Kumar K, Ahmad T, Agarwal A, Chaubey AK (2012) Ind J Phys 86:913CrossRefGoogle Scholar
  23. 23.
    Koning AJ, Rochman D, Kopecky J, Sublet JCH, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest R, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R. TENDL-2015: TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2015/tendl2015.html
  24. 24.
    Ziegler JF (2004) Nucl Instrum Methods B 219–220:1027. http://www.srim.org/
  25. 25.
    Shahid M, Kim K, Naik H, Zaman M, Yang SC, Kim GN (2015) Nucl Instrum Methods B 342:305CrossRefGoogle Scholar
  26. 26.
    Kim K, Khandaker MU, Naik H, Kim GN (2014) Nucl Instrum Methods B 322:63CrossRefGoogle Scholar
  27. 27.
    Shahid M, Kim K, Naik H, Kim GN (2014) Nucl Instrum Methods B 322:13CrossRefGoogle Scholar
  28. 28.
    Qaim SM, Tárkányi F, Obloẑinskỳ P, Gul K, Hermanne A, Mustafa MG, Nortier FM, Scholten B, Shubin Y, Takács S, Zhuang Y (2001) Charged Particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211, Vienna, Data updated in January 2007. https://www-nds.iaea.org/medical/
  29. 29.
    Gilmore G, Hemingway JD (1995) Practical gamma-ray spectrometry (chapter 1). Wiley, Amsterdam, p 17Google Scholar
  30. 30.
    National Nuclear Data Center. Nuclear structure and decay data (NuDat 2.6). http://www.nndc.bnl.gov/nudat2/
  31. 31.
    Firestone RB, Ekström LP (2004) WWW table of radioactive isotopes, Ver. 2.1, Jan. 2004. http://ie.lbl.gov/toi
  32. 32.
    Audi G, Wapstra AH (1995) Nucl Phys A 595:409CrossRefGoogle Scholar
  33. 33.
    Qtool: calculation of reaction Q-values and thresholds, Los Alamos National Laboratory (2011). http://t2.lanl.gov/nis/data/qtool.html
  34. 34.
    Yang SC, Kim K, Song TY, Lee YO, Kim GN (2015) Nucl Instrum Methods B 362:142CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Nuclear Data CenterKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  3. 3.Tandem Accelerator Facilities, Institute of Nuclear Science and TechnologyAtomic Energy Research EstablishmentSavar, DhakaBangladesh
  4. 4.Radiochemistry DivisionBhabha Atomic Research CenterTrombay, MumbaiIndia

Personalised recommendations