Skip to main content
Log in

Evaluation of dose rate and photon energy dependence of PASSAG polymer gel dosimeter

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the current study, dose rate and photon energy dependence of PASSAG gel dosimeter is evaluated by using MRI technique. The gel samples were readies under normal atmospheric conditions and then were irradiated after 24 h with 100, 200, 300, and 400 cGy/min dose rates and photon energies of 6 and 18 MV from a linear accelerator. The results demonstrate that there is no considerable effect of dose rate and photon energy dependence on the R2-dose response and sensitivity of PASSAG gel dosimeter in 0–10 Gy dose range, as there are 0.01–2.80 and 1.46–2.52% difference ranges between the R2 values of the gel samples at four different dose rates and two various photon energies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayashi SI, Fujiwara F, Usui S, Tominaga T (2012) Effect of inorganic salt on the dose sensitivity of polymer gel dosimeter. Radiat Phys Chem 81:884–888

    Article  CAS  Google Scholar 

  2. Sellakumar P, Samuel EJJ (2010) Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-ray CT. Radiat Meas 45:92–97

    Article  CAS  Google Scholar 

  3. Farhood B, Khezerloo D, Zadeh TM, Nedaie HA, Hamrahi D, Khezerloo N (2017) Evaluation of the effect of temperature variation on response of PRESAGE® dosimeter. J Cancer Res Ther 13:118–121

    Article  CAS  PubMed  Google Scholar 

  4. Khezerloo D, Nedaie HA, Takavar A, Zirak A, Farhood B, Movahedinejhad H, Banaee N, Ahmadalidokht I, Knuap C (2017) PRESAGE® as a solid 3-D radiation dosimeter: a review article. Radiat Phys Chem 141:88–97

    Article  CAS  Google Scholar 

  5. Oldham M, Siewerdsen JH, Kumar S, Wong J, Jaffray DA (2003) Optical-CT gel-dosimetry I: basic investigations. Med Phys 30:623–634

    Article  PubMed  PubMed Central  Google Scholar 

  6. Podgorsak EB (2005) Radiation oncology physics. A handbook for teachers and students. International Atomic Energy Agency, Vienna

    Google Scholar 

  7. Abtahi S, Aghamiri S, Khalafi H (2014) Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 300:287–301

    Article  CAS  Google Scholar 

  8. Abtahi S, Zahmatkesh M, Khalafi H (2016) Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J Radioanal Nucl Chem 307:855–868

    Article  CAS  Google Scholar 

  9. Waldenberg C, Hauer AK, Gustafsson C, Ceberg S (2017) Dose integration and dose rate characteristics of a NiPAM polymer gel MRI dosimeter system. J Phys Conf Ser 847:012063

    Article  Google Scholar 

  10. Abtahi S (2016) Characteristics of a novel polymer gel dosimeter formula for MRI scanning: dosimetry, toxicity and temporal stability of response. Phys Med 32:1156–1161

    Article  CAS  PubMed  Google Scholar 

  11. Pappas E, Maris T, Angelopoulos A, Paparigopoulou M, Sakelliou L, Sandilos P, Voyiatzi S, Vlachos L (1999) A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 44:2677–2684

    Article  CAS  PubMed  Google Scholar 

  12. Senden R, De Jean P, McAuley K, Schreiner L (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51:3301–3314

    Article  CAS  PubMed  Google Scholar 

  13. Farhood B, Abtahi SMM, Geraily G, Ghorbani M, Mahdavi SR, Zahmatkesh MH (2018) Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat Phys Chem 147:91–100

    Article  CAS  Google Scholar 

  14. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    Article  CAS  PubMed  Google Scholar 

  15. Maryanski M, Schulz R, Ibbott G, Gatenby J, Xie J, Horton D, Gore J (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    Article  CAS  PubMed  Google Scholar 

  16. Maryanski M, Ibbott G, Eastman P, Schulz R, Gore J (1996) Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys 23:699–705

    Article  CAS  PubMed  Google Scholar 

  17. Kennan RP, Richardson KA, Zhong J, Maryanski MJ, Gore JC (1996) The effects of cross-link density and chemical exchange on magnetization transfer in polyacrylamide gels. J Magn Reson B 110:267–277

    Article  CAS  PubMed  Google Scholar 

  18. Lepage M, Whittaker A, Rintoul L, Bäck SÅJ, Baldock C (2001) Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 46:2827–2839

    Article  CAS  PubMed  Google Scholar 

  19. Papoutsaki MV, Maris TG, Pappas E, Papadakis AE, Damilakis J (2013) Dosimetric characteristics of a new polymer gel and their dependence on post-preparation and post-irradiation time: effect on X-ray beam profile measurements. Phys Med 29:453–460

    Article  PubMed  Google Scholar 

  20. Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA TRS 398

  21. Chiang CM, Hsieh BT, Shieh JI, Cheng KY, Hsieh LL (2013) An approach in exploring the fundamental dosimetric characteristics for a long shelf life irradiated acrylamide-based gel. J Radioanal Nucl Chem 298:1435–1445

    Article  CAS  Google Scholar 

  22. De Deene Y, Baldock C (2002) Optimization of multiple spin–echo sequences for 3D polymer gel dosimetry. Phys Med Biol 47:3117–3141

    Article  PubMed  Google Scholar 

  23. Baldock C, Lepage M, Bäck SÅJ, Murry P, Jayasekera P, Porter D, Kron T (2001) Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  24. Knoll G (2000) Radiation detection and measurement, 3rd edn. Wiley, New York

    Google Scholar 

  25. Novotny J, Spevacek V, Dvorak P, Cechak T (2001) Energy and dose rate dependence of BANG-2 polymer-gel dosimeter. Med Phys 28:2379–2386

    Article  CAS  PubMed  Google Scholar 

  26. Bayreder C, Georg D, Moser E, Berg A (2006) Basic investigations on the performance of a normoxic polymer gel with tetrakis-hydroxy-methyl-phosphonium chloride as an oxygen scavenger: reproducibility, accuracy, stability, and dose rate dependence. Med Phys 33:2506–2518

    Article  CAS  PubMed  Google Scholar 

  27. Adinehvand K, Zahmatkesh M, Aghamiri S, Akhlaghpour S, Bagheri S (2008) Verification of dose rate and energy dependence of MAGICA polymer gel dosimeter with electron beams. Iran J Radiat Res 6:31–36

    Google Scholar 

  28. Azadbakht B, Hadad K, Zahmatkesh M (2009) Response verification of dose rate and time dependence of PAGAT polymer gel dosimeters by photon beams using magnetic resonance imaging. J Phys Conf Ser 164:012036

    Article  CAS  Google Scholar 

  29. Maryanski M, Zastavker Y, Gore J (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol 41:2705–2717

    Article  CAS  PubMed  Google Scholar 

  30. Farajollahi A, Bonnett D, Ratcliffe A, Aukett R, Mills J (1999) An investigation into the use of polymer gel dosimetry in low dose rate brachytherapy. Br J Radiol 72:1085–1092

    Article  CAS  PubMed  Google Scholar 

  31. Baldock C, Greener A, Billingham N, Burford R, Keevil S (1996) Energy response and tissue equivalence of polymer gels for radiation dosimetry by MRI. Proc Eur Soc Magn Reson Med Biol 2:312

    Google Scholar 

  32. Pantelis E, Karlis A, Kozicki M, Papagiannis P, Sakelliou L, Rosiak J (2004) Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy. Phys Med Biol 49:3495–3514

    Article  CAS  PubMed  Google Scholar 

  33. Venning A, Nitschke K, Keall P, Baldock C (2005) Radiological properties of normoxic polymer gel dosimeters. Med Phys 32:1047–1053

    Article  CAS  PubMed  Google Scholar 

  34. De Deene Y, Reynaert N, De Wagter C (2001) On the accuracy of monomer/polymer gel dosimetry in the proximity of a high-dose-rate 192Ir source. Phys Med Biol 46:2801–2825

    Article  PubMed  Google Scholar 

  35. De Deene Y, Vergote K, Claeys C, De Wagter C (2006) The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol 51:653–673

    Article  CAS  PubMed  Google Scholar 

  36. Sathiyaraj P, Samuel JJ (2018) Dose rate and energy dependence study of methacrylic acid gelatin tetrakis (hydroxymethyl) phosphonium chloride gel with flattened and unflattened photon beams. J Cancer Res Ther 14:287–291

    Article  CAS  PubMed  Google Scholar 

  37. Farajollahi A, Pak F, Horsfield M, Myabi Z (2014) The basic radiation properties of the N-isopropylacrylamide based polymer gel dosimeter. Int J Radiat Res 12:347–354

    Google Scholar 

  38. Shih TY, Yen TH, Liu YL, Luzhbin D, Wu J (2017) Evaluation of characteristics of high-energy electron beams using N-isopropyl-acrylamide gel dosimeter. Radiat Phys Chem 140:379–382

    Article  CAS  Google Scholar 

  39. De Deene Y (2004) Essential characteristics of polymer gel dosimeters. J Phys Conf Ser 3:34–57

    Article  CAS  Google Scholar 

  40. De Deene Y, Hanselaer P, De Wagter C, Achten E, De Neve W (2000) An investigation of the chemical stability of a monomer/polymer gel dosimeter. Phys Med Biol 45:859–878

    Article  PubMed  Google Scholar 

  41. De Deene Y, Venning A, Hurley C, Healy B, Baldock C (2002) Dose–response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47:2459–2470

    Article  PubMed  Google Scholar 

  42. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy B, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463

    Article  PubMed  Google Scholar 

  43. Gustavsson H, Karlsson A, Bäck SÅ, Olsson LE, Haraldsson P, Engström P, Nyström H (2003) MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification. Med Phys 30:1264–1271

    Article  PubMed  Google Scholar 

  44. Pavoni J, Baffa O (2012) An evaluation of dosimetric characteristics of MAGIC gel modified by adding formaldehyde (MAGIC-f). Radiat Meas 47:1074–1082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current study was supported by a grant from Tehran University of Medical Sciences, Tehran, Iran coded 95-04-30-33557.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghazale Geraily or Seyed Mohammad Mahdi Abtahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhood, B., Geraily, G., Abtahi, S.M.M. et al. Evaluation of dose rate and photon energy dependence of PASSAG polymer gel dosimeter. J Radioanal Nucl Chem 317, 1041–1050 (2018). https://doi.org/10.1007/s10967-018-5940-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5940-z

Keywords

Navigation