Skip to main content
Log in

Discrimination of uranium ore concentrates by chemometric data analysis to support provenance assessment for nuclear forensics applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work describes a method for the discrimination of uranium ore concentrates (UOCs) to support provenance assessment for nuclear forensics applications using samples representing twenty producers from around the world. The concentrations were measured using inductively coupled plasma mass spectrometry. UOCs were classified using the support vector machine method relying on 61 down to only 18 element concentrations without affecting the accuracy. New features are calculated from combination of elements from the selected 18 elements, and added to the selected elements improve the classification results. Reducing the number leads to the optimization of laboratory measurements of element signatures in support of nuclear safeguards and forensics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900. https://doi.org/10.1021/cr300273f

    Article  CAS  PubMed  Google Scholar 

  2. Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G (2012) Attribution of uranium ore concentrates using elemental and anionic data. Appl Geochem 27(8):1600–1609

    Article  CAS  Google Scholar 

  3. Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal Chem 81(20):8327–8334. https://doi.org/10.1021/ac901100e

    Article  CAS  PubMed  Google Scholar 

  4. Keegan E, Richter S, Kelly I, Wong H, Gadd P, Kuehn H, Alonso-Munoz A (2008) The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl Geochem 23(4):765–777. https://doi.org/10.1016/j.apgeochem.2007.12.004

    Article  CAS  Google Scholar 

  5. Krajkó J, Varga Z, Yalcintas E, Wallenius M, Mayer K (2014) Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. Talanta 129:499–504

    Article  CAS  PubMed  Google Scholar 

  6. Tamborini G, Wallenius M, Bildstein O, Pajo L, Betti M (2002) Development of a SIMS method for isotopic measurements in nuclear forensic applications. Microchim Acta 139(1–4):185–188

    Article  CAS  Google Scholar 

  7. Mercadier J, Cuney M, Lach P, Boiron MC, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23(4):264–269

    Article  CAS  Google Scholar 

  8. Varga Z, Katona R, Stefánka Z, Wallenius M, Mayer K, Nicholl A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80(5):1744–1749. https://doi.org/10.1016/j.talanta.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  9. Keegan E, Kristo MJ, Colella M, Robel M, Williams R, Lindvall R, Eppich G, Roberts S, Borg L, Gaffney A (2014) Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci Int 240:111–121

    Article  CAS  PubMed  Google Scholar 

  10. Lin M, Zhao Y, Zhao L, Li L, Wang F, Zhu L, Hu X, Ning W (2015) Tracing origins of uranium ore concentrates (UOCs) by multidimensional statistical analysis of rare-earth impurities. J Anal At Spectrom 30(2):396–402

    Article  CAS  Google Scholar 

  11. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37–52

    Article  CAS  Google Scholar 

  12. Ho DML, Jones AE, Goulermas JY, Turner P, Varga Z, Fongaro L, Fanghänel T, Mayer K (2015) Raman spectroscopy of uranium compounds and the use of multivariate analysis for visualization and classification. Forensic Sci Int 251:61–68. https://doi.org/10.1016/j.forsciint.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Sirven J-B, Pailloux A, M’Baye Y, Coulon N, Alpettaz T, Gosse S (2009) Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics. J Anal At Spectrom 24(4):451–459

    Article  CAS  Google Scholar 

  14. Doucet FR, Lithgow G, Kosierb R, Bouchard P, Sabsabi M (2011) Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics. J Anal At Spectrom 26(3):536–541

    Article  CAS  Google Scholar 

  15. El-Jaby A, Hinton T, Doucet F, Jovanovic S (2012) Overview of Canada’s National Nuclear Forensics Library Development Programme. Technical_session_2D IAEA-CN218-67

  16. Robel M, Kristo MJ, Heller M (2009) Nuclear forensic inferences using iterative multidimensional statistics. In: Institute of nuclear materials management 50th annual meeting Tucson, AZ (July 2007), 2009

  17. Chesworth W (1973) The parent rock effect in the genesis of soil. Geoderma 10(3):215–225. https://doi.org/10.1016/0016-7061(73)90064-5

    Article  CAS  Google Scholar 

  18. El Bouseily A, El Sokkary A (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem Geol 16(3):207–219

    Article  Google Scholar 

  19. Manning CD, Raghavan P, Schütze H (2008) Support vector machines and machine learning on documents. Introduction to Information Retrieval, pp 319–348

  20. Knerr S, Personnaz L, Dreyfus G (1990) Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Neurocomputing. Springer, pp 41–50

  21. Hsu C-W, Lin C-J (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  PubMed  Google Scholar 

  22. Wise BM, Gallagher N, Bro R, Shaver J, Windig W, Koch RS (2016) PLS Toolbox 8.1.1. Eigenvector Research Incorporated: Wenatchee, WA, USA

  23. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta Part B 101:171–182

    Article  CAS  Google Scholar 

  24. EPA (2007) Microwave assisted acid digestion of sediments, sludges, soils, and oils: EPA method 3051A. USEPA, Washington

    Google Scholar 

  25. Varga Z, Krajkó J, Peńkin M, Novák M, Eke Z, Wallenius M, Mayer K (2017) Identification of uranium signatures relevant for nuclear safeguards and forensics. J Radioanal Nucl Chem 312(3):639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was undertaken under Canada’s National Nuclear Forensics Library (NNFL) Development Program, which is led by the Canadian Nuclear Safety Commission (CNSC). The CNSC NNFL Development Program is support in part by the Canadian Safety and Security Program (CSSP), which is managed by Defence Research and Development Canada (DRDC) Centre for Security Science (CSS). The authors gratefully acknowledge the CNSC and Dr. C. Drummond and Mr. A. Sheidl from NRC for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josette El Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haddad, J., Harhira, A., Blouin, A. et al. Discrimination of uranium ore concentrates by chemometric data analysis to support provenance assessment for nuclear forensics applications. J Radioanal Nucl Chem 317, 625–632 (2018). https://doi.org/10.1007/s10967-018-5912-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5912-3

Keywords

Navigation