Activation of enriched environmental xenon by 14-MeV neutrons

Abstract

The international monitoring system exists to verify compliance with the terms of the comprehensive test ban treaty. About 10% of the member stations will be capable of detecting radioxenon, which can be produced in nuclear detonations or through civilian processes. We have studied the activation of radioxenon by the prompt, intense spectrum of 14-MeV neutrons produced at the National Ignition Facility. While 14-MeV neutrons are not currently a significant contributor to the production of radioxenon, we find that radioxenon produced through activation of environmental xenon by 14-MeV neutrons would be distinguishable from activation by nuclear tests.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    CTBTO Preparatory Commission. http://ctbto.org/. Accessed 15 Oct 2017

  2. 2.

    Bowyer T, Schlosser C, Abel K, Auer M, Hayes J, Heimbigner T, McIntyre J, Panisko M, Reeder P, Satorius H, Schulze J, Weiss W (2002) J Environ Radioact 59(2):139

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    United Nations (1998) CTBT, comprehensive nuclear test-ban treaty. United Nations, New York, Department for Disarmament Affairs and Department of Public Information

  4. 4.

    Report of Working Group B to the Third Session of the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization, 4–14 August 1997, CTBTO, CTBT/PC/III/1/Add.2, 15–19 September, 1997

  5. 5.

    Report of Working Group B to the Seventh Session Of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization as amended by the Preparatory Commission, 24 August to 4 September 1998, CTBTO, CTBT/PC-7/1/Annex II, 9–13 November 1998

  6. 6.

    Kalinowski MB, Feichter J, Nikkinen M, Schlosser C (2006) Environmental sample analysis. Springer, Berlin, pp 367–387

    Google Scholar 

  7. 7.

    Kalinowski MB, Axelsson A, Bean M, Blanchard X, Bowyer TW, Brachet G, Hebel S, McIntyre JI, Peters J, Pistner C, Raith M, Ringbom A, Saey PRJ, Schlosser C, Stocki TJ, Taffary T, Ungar RK (2010) Pure Appl Geophys 167(4):517

    Article  Google Scholar 

  8. 8.

    Saey PR, Bowyer TW, Ringbom A (2010) Appl Radiat Isot 68(9):1846

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Khazov K, Mitropolsky I, Rodionov A (2006) Nucl Data Sheets 107(11):2715

    Article  CAS  Google Scholar 

  10. 10.

    Ringbom A, Axelsson A, Aldener M, Auer M, Bowyer T, Fritioff T, Hoffman I, Khrustalev K, Nikkinen M, Popov V, Popov Y, Ungar K, Wotawa G (2014) J Environ Radioact 128:47

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    De Geer L-E (2001) Kerntechnik 66(3):113

    Google Scholar 

  12. 12.

    Valkovic V (2015) 14 MeV neutrons: physics and applications, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  13. 13.

    Klingberg FJ, Biegalski SR, Fay AG (2013) J Radioanal Nucl Chem 296(1):117

    Article  CAS  Google Scholar 

  14. 14.

    Klingberg FJ (2015) Production and analysis of traditional and non-traditional radioxenon isotopes. PhD thesis, The University of Texas at Austin

  15. 15.

    Singh B, Rodionov AA, Khazov YL (2008) Nucl Data Sheets 109(3):517

    Article  CAS  Google Scholar 

  16. 16.

    Chadwick M et al (2011) Nucl Data Sheets 112(12):2887

    Article  CAS  Google Scholar 

  17. 17.

    Koning A et al, TENDL-2014: talys-based evaluated nuclear data library. www.talys.eu/tendl-2014.html. Accessed 20 Oct 2017

  18. 18.

    Koning A, Rochman D (2012) Nucl Data Sheets 113(12):2841

    Article  CAS  Google Scholar 

  19. 19.

    Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R (2009) Phys Plasmas 16(4):041006

    Article  CAS  Google Scholar 

  20. 20.

    Spaeth ML et al (2016) Fusion Sci Technol 69(1):25

    Article  Google Scholar 

  21. 21.

    Le Pape S et al (2014) Phys Rev Lett 112:225002

    Article  PubMed  Google Scholar 

  22. 22.

    X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5—Volume I: Overview and Theory. Tech. Rep. LA-UR-03-1987, Los Alamos National Laboratory (2008)

  23. 23.

    Tuli JK (2011) Nuclear wallet cards, 8th edn. Brookhaven National Laboratory, Brookhaven

    Google Scholar 

  24. 24.

    Bleuel DL et al (2012) Rev Sci Instrum 83(10):10D313

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Ratkiewicz A, Berzak Hopkins L, Bleuel DL, Bernstein LA, van Bibber K, Cassata WS, Goldblum BL, Siem S, Velsko CA, Wiedeking M, Yeamans CB (2016) Rev Sci Instrum 87(11):11D825

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Plummer R (2013) Proc SPIE 8850:8850

    Google Scholar 

  27. 27.

    LLNL Nuclear Counting Facility. https://pls.llnl.gov/people/divisions/nuclear-and-chemical-sciences-division/capabilities/capabilities. Accessed 16 Oct 2017

  28. 28.

    Gunnick R, Niday J (1972) Computerized analysis by gamma-ray spectroscopy volumes 1–4. Tech. Rep. UCRL-51061, Lawrence Livermore Laboratory

  29. 29.

    Gilmore GR (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, New York, p 160

    Google Scholar 

  30. 30.

    Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry, 3rd edn. Wiley, New York, p 193

    Google Scholar 

  31. 31.

    Khazov Y, Rodionov A, Kondev F (2011) Nucl Data Sheets 112(4):855

    Article  CAS  Google Scholar 

  32. 32.

    Koning AJ, Hilaire S, Duijvestijn MC (2007) International conference on nuclear data for science and technology, pp 211–214

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The authors would like to thank Mark Wilson, Jim Cox, and the NIF Facility and Operations staff for their assistance in fielding the experiment discussed in this work and for implementing the SUPER-RUSH sample collection protocol which enabled a high-statistics measurement of the decay of 135-gXe. The authors thank Michaele Kashgarian, Keenan Thomas, and Todd Wooddy and the Nuclear Counting Facility Staff for their assistance in collecting the radioxenon decay data discussed in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ratkiewicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ratkiewicz, A., Hopkins, L.B., Bleuel, D.L. et al. Activation of enriched environmental xenon by 14-MeV neutrons. J Radioanal Nucl Chem 317, 169–175 (2018). https://doi.org/10.1007/s10967-018-5911-4

Download citation

Keywords

  • Radioxenon
  • CTBTO
  • Environmental monitoring
  • Treaty verification
  • Neutron activation
  • National Ignition Facility