Advertisement

Hydrological insights from hydrogen and oxygen isotopes in Source Area of the Yellow River, east-northern part of Qinghai–Tibet Plateau

  • Peng Yi
  • Chengwei Wan
  • Huijun Jin
  • Dongliang Luo
  • Yuzhong Yang
  • Qingfeng Wang
  • Zhongbo Yu
  • A. Aldahan
Article
  • 82 Downloads

Abstract

Analyses of stable (D and 18O) and radioactive (T) isotopes of different waters were applied to obtain the hydrological information in watersheds with different frozen ground types in the Source Area of the Yellow River, northeastern of Qinghai–Tibet Plateau in 2014 and 2016. Variations of oxygen and hydrogen isotope ratios, statistically higher tritium concentrations and lower water yields in thaw lakes confirm disparate sources of recharges to thaw lakes and other lakes. Thaw lakes at various stages of evolution influence the surface and subsurface water systems differently.

Keywords

Tritium Stable water isotopes Source Area of the Yellow River Hydrology Frozen ground regions 

Notes

Acknowledgements

This research was supported by the Chinese Academy of Sciences (CAS) Key Research Program (KZZD-EW-13), the National Natural Science Foundation of China (Grant No. 4147229), the State Key Program of National Natural Science of China (Grant No. 51539003) the Funds for State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE201301), the China Postdoctoral Science Foundation funded project (Grant No. 2014M562478), Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014490411), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0418) and the Fundamental Research Funds for the Central Universities (Grant No. 2017B682X14). The authors are grateful to the reviewer and editors. We also appreciate the help from Prof. J. Gibson and Dr. Y. Yi.

References

  1. 1.
    Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan mountains, central Asia. Glob Planet Change 56(3):311–327CrossRefGoogle Scholar
  2. 2.
    Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac 19(2):237–254CrossRefGoogle Scholar
  3. 3.
    McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res 109:D18102CrossRefGoogle Scholar
  4. 4.
    Niu L, Ye B, Ding Y, Li J, Zhang Y, Sheng Y, Yue G (2016) Response of hydrological processes to permafrost degradation from 1980 to 2009 in the Upper Yellow River Basin, China. Hydrol Res 47(5):1014–1024CrossRefGoogle Scholar
  5. 5.
    Jin H, He R, Cheng G, Wu Q, Wang S, Lü L, Chang X (2009) Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4(4):045206CrossRefGoogle Scholar
  6. 6.
    Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Shen Y (2008) Cryospheric change in China. Glob Planet Change 62(3):210–218CrossRefGoogle Scholar
  7. 7.
    Hu Y, Maskey S, Uhlenbrook S (2012) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Change 110(1–2):403–429CrossRefGoogle Scholar
  8. 8.
    Jin HJ, Wang SL, Lu LZ, He RX, Chang XL, Luo DL (2010) Features and degradation of frozen ground in the sources area of the Yellow River, China. Glaciol Geocryol 32(1):10–17Google Scholar
  9. 9.
    Duan S, Fan S, Cao G, Liu X, Sun Y (2015) The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014. J Glaciol Geocryol 37:745–756Google Scholar
  10. 10.
    Kendall C, McDonnell JJ (2012) Isotope tracers in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Sánchez-España J, Ercilla MD, Cerdán FP, Yusta I, Boyce AJ (2014) Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J Hydrol 511:494–508CrossRefGoogle Scholar
  12. 12.
    Craig H, Gordon LI, Horibe Y (1963) Isotopic exchange effects in the evaporation of water: 1. Low-temperature experimental results. J Geophys Res 68(17):5079–5087CrossRefGoogle Scholar
  13. 13.
    Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468CrossRefGoogle Scholar
  14. 14.
    Gat J, Gonfiantini R (1981) Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency (IAEA): IAEAGoogle Scholar
  15. 15.
    Kirichek O, Soper A, Dzyuba B, Callear S, Fuller B (2015) Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions. PLoS ONE 10(3):e0120611CrossRefGoogle Scholar
  16. 16.
    Hayashi M, Quinton WL, Pietroniro A, Gibson JJ (2004) Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. J Hydrol 296(1):81–97CrossRefGoogle Scholar
  17. 17.
    Streletskiy DA, Tananaev NI, Opel T, Shiklomanov NI, Nyland KE, Streletskaya ID, Shiklomanov AI (2015) Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ Res Lett 10(9):095003CrossRefGoogle Scholar
  18. 18.
    Yang Y, Wu Q, Yun H, Jin H, Zhang Z (2016) Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes. Glob Planet Change 140:1–8CrossRefGoogle Scholar
  19. 19.
    Lacelle D, Vasil’chuk YK (2013) Recent progress (2007–2012) in permafrost isotope geochemistry. Permafr Periglac 24(2):138–145CrossRefGoogle Scholar
  20. 20.
    Gibson JJ, Birks SJ, Yi Y (2016) Higher tritium concentrations measured in permafrost thaw lakes in northern Alberta. Hydrol Process 30(2):245–249CrossRefGoogle Scholar
  21. 21.
    Hiyama T, Asai K, Kolesnikov AB, Gagarin LA, Shepelev VV (2013) Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ Res Lett 8(3):035040CrossRefGoogle Scholar
  22. 22.
    Wang SL, Wang P, Zhang TJ (1989) Applications of environmental isotope tritium to research into ground ice in permafrost regions of Qinghai-Xizang Plateau. Glaciol Geocryol 1:006Google Scholar
  23. 23.
    Wang SL et al (1990) Research on tritium in surface and subface water in the eastern Qinghai-Tibet Plateau. Environ Sci 1:004Google Scholar
  24. 24.
    Samalavičius V, Mokrik R (2016) Tritium activity trend formation in groundwater of Quaternary aquifer system, south-eastern Lithuania. Geol Geogr 2(4):173–181Google Scholar
  25. 25.
    Caschetto M, Colombani N, Mastrocicco M, Petitta M, Aravena R (2016) Estimating groundwater residence time and recharge patterns in a saline coastal aquifer. Hydrol Process 30(22):4202–4213CrossRefGoogle Scholar
  26. 26.
    McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res 40(7):W07504CrossRefGoogle Scholar
  27. 27.
    Guan B (1986) The extrapolation of tritium in the precipitation of China. Hydrogeol Eng Geol 13(4):38–42Google Scholar
  28. 28.
    Gibson JJ, Birks SJ, Yi Y (2016) Stable isotope mass balance of lakes: a contemporary perspective. Quat Sci Rev 131:316–328CrossRefGoogle Scholar
  29. 29.
    Ren W, Yao T, Yang X, Joswiak DR (2013) Implications of variations in δ 18 O and δD in precipitation at Madoi in the eastern Tibetan Plateau. Quat Int 313:56–61CrossRefGoogle Scholar
  30. 30.
    Yi Y, Brock BE, Falcone MD, Wolfe BB, Edwards TW (2008) A coupled isotope tracer method to characterize input water to lakes. J Hydrol 350(1):1–13CrossRefGoogle Scholar
  31. 31.
    Yang Y, Wu Q, Jin H (2016) Evolutions of water stable isotopes and the contributions of cryosphere to the alpine river on the Tibetan Plateau. Environ Earth Sci 75(1):49CrossRefGoogle Scholar
  32. 32.
    Tong L, Xu X, Fu Y, Li S (2014) Wetland changes and their responses to climate change in the “three-river headwaters” region of China since the 1990s. Energies 7(4):2515–2534CrossRefGoogle Scholar
  33. 33.
    Lin Z, Niu F, Xu Z, Xu J, Wang P (2010) Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr Periglac 21(4):315–324CrossRefGoogle Scholar
  34. 34.
    Luo D, Jin H, Lü L, Wu Q (2014) Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Chin Sci Bull 59(24):3034–3045CrossRefGoogle Scholar
  35. 35.
    Liu GS et al (2012) Variation characteristics of stable isotopes in precipitation and river water in Fenghuoshan permafrost watershed. Adv Water Sci 23(5):621Google Scholar
  36. 36.
    Zai-po X, Xl-Iai L, Hong-lin Z, Mei-qin H (2015) The three types wetlands area changes preliminary research of Maduo county in the Yellow River Source Zone. J Qinghai Univ 3:010Google Scholar
  37. 37.
    Karlsson JM, Jaramillo F, Destouni G (2015) Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J Hydrol 529:134–145CrossRefGoogle Scholar
  38. 38.
    Zheng MJ, Wan CW, Du MD, Zhou XD, Yi P, Aldahan A, Gong M (2016) Application of Rn-222 isotope for the interaction between surface water and groundwater in the Source Area of the Yellow River. Hydrol Res 47(6):1253–1262CrossRefGoogle Scholar
  39. 39.
    Ala-Aho P, Soulsby C, Pokrovsky OS, Kirpotin SN, Karlsson J, Serikova S, Tetzlaff D (2018) Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J Hydrol 556:279–293CrossRefGoogle Scholar
  40. 40.
    Connon RF, Quinton WL, Craig JR, Hayashi M (2014) Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol Process 28(14):4163–4178CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Hydrology and Water ResourcesHohai UniversityNanjingChina
  2. 2.State Key Laboratory of Hydrology - Water Resources and Hydraulic EngineeringNanjingChina
  3. 3.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina
  4. 4.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  5. 5.Department of GeologyUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  6. 6.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations