Skip to main content
Log in

Uranium recovery and purification from simulated waste streams containing high uranium concentrations with dispersion liquid membranes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The suitability of dispersion liquid membranes (DLMs) to recover and purify uranium from simulated waste streams containing nitric acid, high uranium concentrations and radionuclide contaminants with tributyl phosphate (TBP) and ammonium carbonate ((NH4)2CO3) as stripping solution was investigated. The radionuclide surrogates were not extracted and complete uranium recovery was obtained from 15 g U L−1 solutions using a 1:4 ratio of 30% TBP in kerosene and 0.75 M (NH4)2CO3 dispersion. In addition, all the uranium in the stripping solution was precipitated. Consequently, DLM proved to be a promising solvent extraction contacting method for uranium recovery and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Gabelman and Hwang [12] with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stassen L, Suthiram J (2015) Initial development of an alkaline process for recovery of uranium from 99Mo production process waste residue. J Radioanal Nucl Chem 305:41–50. https://doi.org/10.1007/s10967-015-3974-z

    Article  CAS  Google Scholar 

  2. Roy SC, Sonawane SV, Rathore NS, Pabby AK, Janardan P, Changrani RD, Dey PK, Bharadwaj SR (2010) Pseudo-emulsion based hollow fiber strip dispersion technique (PEHFSD): optimization, modelling and application of PEHFSD for recovery of U(VI) from process effluent. Sep Sci Technol 43(11–12):3305–3332. https://doi.org/10.1080/01496390802064141

    Article  CAS  Google Scholar 

  3. Carrigan A, Gouzy-Portaix S, Dix J (2015) Feasibility of producing 99Mo on a small scale using fission of low enriched uranium or neutron activation of natural molybdenum. Technical reports series. International Atomic Energy Agency, Vienna

    Google Scholar 

  4. Rathore NS, Sastre AM, Pabby AK (2016) Membrane assisted liquid extraction of actinides and remediation of nuclear waste: a review. J Membr Sci Res 2(1):2–13. https://doi.org/10.22079/jmsr.2016.15872

    Article  Google Scholar 

  5. Wang D (1987) Some aspects of the back end of the nuclear fuel cycle in China. In: Back end of the nuclear fuel cycle: strategies and options. International Atomic Energy Agency

  6. Hlushak SP, Simonin JP, Caniffi B, Moisy P, Sorel C, Bernard O (2011) Description of partition equilibria for uranyl nitrate, nitric acid and water extracted by tributyl phosphate in dodecane. Hydrometallurgy 109:97–105

    Article  CAS  Google Scholar 

  7. Todd T, Law J, Herbst R, Lumetta GJ, Moyer BA (2000) Treatment of radioactive wastes using liquid–liquid extraction technologies—fears, facts, and issues. In: Waste management, Tucson, Arizona, US

  8. Maher CJ (2015) Current headend technologies and future developments in the reprocessing of spent nuclear fuels. In: Taylor R (ed) Reprocessing and recycling of spent nuclear fuel, vol 79. Woodhead Publishing, Cambridge, pp 93–124

    Chapter  Google Scholar 

  9. Klaassen R, Jansen EA (2001) The membrane contactor: environmental applications and possibilities. Environ Prog 20(1):37–43. https://doi.org/10.1002/ep.670200114

    Article  CAS  Google Scholar 

  10. Eccles H (2000) Nuclear fuel cycle technologies—sustainable in the twenty first century? Solvent Extr Ion Exch 18(4):633–654. https://doi.org/10.1080/07366290008934701

    Article  CAS  Google Scholar 

  11. Srinivasan TG, Vijayasaradhi S, Dhamodaran R, Suresh A, Vasudeva Rao PR (1998) Third phase formation in extraction of thorium nitrate by mixtures of trialkyl phosphates. Solvent Extr Ion Exch 16(4):1001–1011. https://doi.org/10.1080/07366299808934565

    Article  CAS  Google Scholar 

  12. Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159(1):61–106. https://doi.org/10.1016/S0376-7388(99)00040-X

    Article  CAS  Google Scholar 

  13. Pabby AK, Sastre AM (2013) State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Membr Sci 430:263–303. https://doi.org/10.1016/j.memsci.2012.11.060

    Article  CAS  Google Scholar 

  14. Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, Dey PK (2007) Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor. J Membr Sci 300:131–136. https://doi.org/10.1016/j.memsci.2007.05.018

    Article  CAS  Google Scholar 

  15. Rathore NS, Sonawane JV, Kumar AK, Venugopalan AK, Singh RK, Bajpai DD, Shukla JP (2001) Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes. J Membr Sci 189:119–128. https://doi.org/10.1016/s0376-7388(01)00406-9

    Article  CAS  Google Scholar 

  16. Drioli E, Criscuoli A, Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities. Membrane science and technology series, vol 11. Elsevier, Amsterdam

    Google Scholar 

  17. Drioli E, Curcio E, di Profio G (2005) State of the art and recent progresses in membrane contactors. Chem Eng Res Des 83(3):223–233. https://doi.org/10.1205/cherd.04203

    Article  CAS  Google Scholar 

  18. Drioli E, Stankiewicz AI, Macedonio F (2011) Membrane engineering in process intensification—an overview. J Membr Sci 380(1):1–8. https://doi.org/10.1016/j.memsci.2011.06.043

    Article  CAS  Google Scholar 

  19. Sastre AM, Pabby AK (2015) Membrane applications in industrial waste management (including nuclear), environmental engineering and future trends in membrane science. In: Pabby AK, Rizvi SSH, Sastre AM (eds) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton, pp 823–1145

    Google Scholar 

  20. Dixit S, Chinchale R, Govalkar S, Mukhopadhyay S, Shenoy KT, Rao H, Ghosh SK (2013) A mathematical model for size and number scale up of hollow fiber modules for the recovery of uranium from acidic nuclear waste using the DLM technique. Sep Sci Technol 48(16):2444–2453. https://doi.org/10.1080/01496395.2013.807825

    Article  CAS  Google Scholar 

  21. Dixit S, Mukhopadhyay S, Govalkar S, Shenoy KT, Rao H, Ghosh SK (2012) A mathematical model for pertraction of uranium in hollow fiber contactor using TBP. Desalin Water Treat 38:195–206. https://doi.org/10.1080/19443994.2012.664359

    Article  CAS  Google Scholar 

  22. Bernardo P, Clarizia G (2011) Potential of membrane operations in redesigning industrial processes. The ethylene oxide manufacture. Chem Eng Trans 25(2):617–622

    Google Scholar 

  23. Pabby AK, Swain B, Sastre AM (2017) Recent advances in smart integrated membrane assisted liquid extraction technology. Chem Eng Process Process Intensif 120:27–56. https://doi.org/10.1016/j.cep.2017.06.006

    Article  CAS  Google Scholar 

  24. Hu S-YB, Wiencek JM (1998) Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor. AIChE J 44(3):570–581. https://doi.org/10.1002/aic.690440308

    Article  CAS  Google Scholar 

  25. Shukla JP, Kumar A, Singh RK, Iyer RH (1996) Separation of radiotoxic actinides from reprocessing wastes with liquid membranes. In: Bartsch RA, Way JD (eds) Chemical separations with liquid membranes. ACS symposium series, vol 642. American Chemical Society, pp 391–408. https://doi.org/10.1021/bk-1996-0642.ch027

  26. Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A (2009) Application of pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) for recovery of Cr(III) from alkaline solutions. Sep Purif Technol 66(3):586–590. https://doi.org/10.1016/j.seppur.2009.01.012

    Article  CAS  Google Scholar 

  27. Gonzalez R, Cerpa A, Alguacil FJ (2010) Nickel(II) removal by mixtures of Acorga M5640 and DP8R in pseudo-emulsion based hollow fiber with strip dispersion technology. Chemosphere 81(9):1164–1169. https://doi.org/10.1016/j.chemosphere.2010.08.054

    Article  CAS  PubMed  Google Scholar 

  28. Ho WSW, Wang B, Neumuller TE, Roller J (2001) Supported liquid membranes for removal and recovery of metals from waste waters and process streams. Environ Prog 20(2):117–121. https://doi.org/10.1002/ep.670200215

    Article  CAS  Google Scholar 

  29. De Agreda D, Garcia-Diaz I, López F, Alguacil F (2011) Supported liquid membranes technologies in metals removal from liquid effluents. Rev Met 47(2):146–168

    Article  CAS  Google Scholar 

  30. Sengupta A, Basu R, Sirkar KK (1988) Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34(10):1698–1708. https://doi.org/10.1002/aic.690341014

    Article  CAS  Google Scholar 

  31. Ho WSW (2003) Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion. Ann N Y Acad Sci 984(1):97–122. https://doi.org/10.1111/j.1749-6632.2003.tb05995.x

    Article  CAS  PubMed  Google Scholar 

  32. Tkac P, Matteson B, Bruso J, Paulenova A (2008) Complexation of uranium(VI) with acetohydroxamic acid. J Radioanal Nucl Chem 277(1):31–36. https://doi.org/10.1007/s10967-008-0705-8

    Article  CAS  Google Scholar 

  33. Mckay HAC (1990) The PUREX process. In: Schulz WW, Bender KP, Burger LL, Navratil JD (eds) Science and technology of tributyl phosphate. CRC Press, Boca Raton, pp 1–9

    Google Scholar 

  34. Kumar JR, Kim J-S, Lee J-Y, Yoon H-S (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760

    Article  CAS  Google Scholar 

  35. Nash KL, Barrans RE, Chiarizia R, Dietz ML, Jensen MP, Rickert PG, Moyer BA, Bonnesen PV, Bryan JC, Sachleben RA (2000) Fundamental investigations of separations science for radioactive materials. Solvent Extr Ion Exch 18(4):605–631. https://doi.org/10.1080/07366290008934700

    Article  CAS  Google Scholar 

  36. Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Venugopalan AK, Changrani RD, Dey PK, Venkataramani B (2005) Application of hollow fiber contactor in nondispersive solvent extraction of Pu(IV) by TBP. Sep Sci Technol 40(9):1911–1926. https://doi.org/10.1081/ss-200064546

    Article  CAS  Google Scholar 

  37. Musikas C, Schulz WW, Liljenzin J (2004) Solvent extraction in nuclear science and technology. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice, revised and expanded. Marcel Dekker, Inc., New York, pp 507–558

    Google Scholar 

  38. Kweto B, Groot DR, Stassen L, Suthiram J, Zeevaart JR (2012) The use of ammonium carbonate as lixiviant in uranium leaching. In: Paper presented at the ALTA, Perth, Australia, 31 May–1 June 2012

  39. Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130. https://doi.org/10.1016/j.desal.2013.02.022

    Article  CAS  Google Scholar 

  40. Singh SK, Misra SK, Sudersanan M, Dakshinamoorthy A, Munshi SK, Dey PK (2007) Carrier-mediated transport of uranium from phosphoric acid medium across TOPO/n-dodecane-supported liquid membrane. Hydrometallurgy 87:190–196. https://doi.org/10.1016/j.hydromet.2007.03.004

    Article  CAS  Google Scholar 

  41. Jablonski BB, Leyden DE (1978) Flow photometric monitor for uranium in carbonate solutions. Anal Chem 50(3):404–407. https://doi.org/10.1021/ac50025a012

    Article  CAS  Google Scholar 

  42. Hurst FJ, Crouse DJ (1960) Recovery of uranium from di(2-ethylhexyl)phosphoric acid (Dapex) extractant with ammonium carbonate. Oak Ridge National Laboratory

  43. Baran V (1982) Ammonium uranyl carbonates—complex compounds with variable coordination number. Collect Czechoslov Chem Commun 47(5):1269–1281. https://doi.org/10.1135/cccc19821269

    Article  CAS  Google Scholar 

  44. Davis Jr W (1961) Thermodynamics of extraction of nitric acid by tri-n-butyl phosphate-hydrocarbon diluent solutions (trans: Chemical Technology Division ORNL). U.S. Atomic Energy Commission, Oak Ridge National Laboratory

  45. Kotz JC, Treichel PM, Townsend J (2012) Chemistry and chemical reactivity. Cengage Learning, Boston

    Google Scholar 

  46. Fedoroff BT, Sheffield OE, Clift GD, Reese EF (1962) Encyclopedia of explosives and related items, vol 2. Army Armament Research Development and Engineering Center, Picatinny Arsenal NJ Warheads Energetics and Combat Support Armaments Center, Morris County

    Google Scholar 

  47. Marlair G, Kordek M-A (2005) Safety and security issues relating to low capacity storage of AN-based fertilizers. J Hazard Mater 123(1):13–28. https://doi.org/10.1016/j.jhazmat.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  48. Chaturvedi S, Dave PN (2013) Review on thermal decomposition of ammonium nitrate. J Energ Mater 31(1):1–26. https://doi.org/10.1080/07370652.2011.573523

    Article  CAS  Google Scholar 

  49. Bachmann HG, Seibold K, Dokuzoquz HZ, Muller HM (1975) X-ray powder diffraction and some thermodynamic data for (NH4)4[UO2(CO3)3]. J Inorg Nucl Chem 37:735–737. https://doi.org/10.1016/0022-1902(75)80530-6

    Article  CAS  Google Scholar 

  50. Awan IZ, Khan AQ (2015) Uranium—the element: its occurrence and uses. J Chem Soc Pak 37(6):1056–1080

    CAS  Google Scholar 

  51. Rodden CJ (1950) Analytical chemistry of the Manhattan project, vol 1. McGraw-Hill, New York

    Google Scholar 

  52. Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(VI) with 2-(5-bromo-2-pyridalazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79

    Article  CAS  Google Scholar 

  53. Fuwa K, Valle BL (1963) The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer–Lambert law. Anal Chem 35(8):942–946. https://doi.org/10.1021/ac60201a006

    Article  CAS  Google Scholar 

  54. Liqui-Cel® M (2017) Datasheets. http://www.liquicel.com/uploads/documents/2%205x8ExtraFlow-D59Rev16%2010-15%20_ke.pdf. Accessed 26 Sep 2017

  55. Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2016) Uranium recovery from simulated molybdenum-99 production residue using non-dispersive membrane based solvent extraction. Hydrometallurgy 164:330–333. https://doi.org/10.1016/j.hydromet.2016.07.001

    Article  CAS  Google Scholar 

  56. Paulenova A, Vandegrift GF, Czerwinski KR (2009) Plutonium chemistry in the UREX+ separation processes. Oregon State University

  57. Fourie M, Meyer WCMH, Van der Westhuizen DJ, Krieg HM (2017) Influence of radiation on a polypropylene membrane contactor used during MBSX of uranium from nitric acid solutions. In: Paper presented at the uranium 2017 international conference, Swakopmund, Namibia, 11–12 September

  58. Fouad EA, Bart HJ (2008) Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor. J Membr Sci 307(2):156–168. https://doi.org/10.1016/j.memsci.2007.09.043

    Article  CAS  Google Scholar 

  59. Reis MTA, Carvalho JMR (2004) Modelling of zinc extraction from sulphate solutions with bis(2-ethylhexyl)thiophosphoric acid by emulsion liquid membranes. J Membr Sci 237(1):97–107. https://doi.org/10.1016/j.memsci.2004.02.025

    Article  CAS  Google Scholar 

  60. Lee SC, Ahn BS, Lee WK (1996) Mathematical modeling of silver extraction by an emulsion liquid membrane process. J Membr Sci 114(2):171–185. https://doi.org/10.1016/0376-7388(95)00315-0

    Article  CAS  Google Scholar 

  61. Whitten KW, Gailey KD (1981) General chemistry with qualitative analysis, 4th edn. Saunders College Publishing, Harcourt Brace College Publishers, Orlando

    Google Scholar 

  62. Sonawane JV, Pabby AK, Sastre AM (2007) Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300(1–2):147–155. https://doi.org/10.1016/j.memsci.2007.05.016

    Article  CAS  Google Scholar 

  63. D’Elia NA, Dahuron L, Cussler EL (1986) Liquid–liquid extractions with microporous hollow fibers. J Membr Sci 29(3):309–319. https://doi.org/10.1016/s0376-7388(00)81269-7

    Article  Google Scholar 

  64. Rout PC, Sarangi K (2013) A comparative study on extraction of Mo(VI) using both solvent extraction and hollow fiber membrane technique. Hydrometallurgy 133(Supplement C):149–155. https://doi.org/10.1016/j.hydromet.2013.01.005

    Article  CAS  Google Scholar 

  65. Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic, New York

    Google Scholar 

  66. Jindra J, Škramovský S (1966) Herstellung und wärmeverhalten binärer uranylcarbonate. Collect Czechoslov Chem Commun 31(7):2639–2645. https://doi.org/10.1135/cccc19662639

    Article  CAS  Google Scholar 

  67. Amayri S (2002) Charakterisierung und Löslichkeit von Erdalkaliuranylcarbonaten M2[UO2(CO3)3xH2O; M: Mg, Ca, Sr, Ba. Forschungszentrum Rossendorf, Rossendorf

    Google Scholar 

  68. Leay L, Bower W, Horne G, Wady P, Baidak A, Pottinger M, Nancekievil M, Smith AD, Watson S, Green PR, Lennox B, LaVerne JA, Pimblott SM (2015) Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl Instrum Methods Phys Res B 343:62–69. https://doi.org/10.1016/j.nimb.2014.11.028

    Article  CAS  Google Scholar 

  69. Arai Y, Ogino H, Takeuchi M, Kase T, Nakajima Y (2011) Study on cleaning solvents using activated alumina in PUREX process. Proc Radiochim Acta 1(1):71–74. https://doi.org/10.1524/rcpr.2011.0012

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported in part by Necsa and the South African National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maretha Fourie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fourie, M., van der Westhuizen, D.J. & Krieg, H.M. Uranium recovery and purification from simulated waste streams containing high uranium concentrations with dispersion liquid membranes. J Radioanal Nucl Chem 317, 355–366 (2018). https://doi.org/10.1007/s10967-018-5860-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5860-y

Keywords

Navigation