Radiochemical characterization and decontamination of rare-earth-element concentrate recovered from uranium leach liquors

  • Vladimir N. Rychkov
  • Vladimir S. Semenishchev
  • Evgeny V. Kirillov
  • Sergey V. Kirillov
  • Viktoria G. Ryabukhina
  • Denis V. Smyshlyaev
  • Grigory M. Bunkov
  • Maxim S. Botalov


The paper deals with two rare earth elements (REE) concentrates recovered from uranium leach liquors after sorption separation of uranium. Activity of the REE concentrates was found to be 106 Bq kg−1; Ac-227 and its short-lived daughter products were the main radioactive impurities contributing more than 99% of total activity. Activity of both U-238 + Th-232 in the REE concentrates did not exceed 0.2% of total activity. Extraction by 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (P-507 extractant) in Shelsol D90 diluent was suggested for REE deactivation. It was shown that thorium may be eliminated by extraction in strong acidic media (pH − 0.5 to − 1), whereas radium extraction was suppressed over the whole studied pH range. Further REE separation to heavy and light groups at pH 1 resulted in selective concentration of actinium in light REE group. The suggested separation flowsheet was tested on the real REE concentrate. It was shown that obtaining non-radioactive fraction of heavy REE is possible.


Rare earth elements Actinium Uranium leach liquors Extraction 2-Ethylhexylphosphonic acid mono-(2-ethylhexyl) ester 



The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of September 26, 2017 (No. 14.575.21.0137, unique agreement identifier RFMEFI57517X0137) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020.”


  1. 1.
    Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989CrossRefGoogle Scholar
  2. 2.
    Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077CrossRefGoogle Scholar
  3. 3.
    Mizia RE, Lister TE, Pinhero PJ, Trowbridge TL, Hurt WL, Robino CV, Stephens JJ, Dupont JN (2005) Development and testing of an advanced neutron-absorbing gadolinium alloy for spent nuclear fuel storage. Nucl Technol 155:133–148CrossRefGoogle Scholar
  4. 4.
    Kilbourn BT (1988) Metallurgical applications of yttrium and the lanthanides. JOM-J. Min Met Mat S. 40:22–25CrossRefGoogle Scholar
  5. 5.
    Hu P, Zhou Y, Chang T, Yu Z, Wang K, Yang F, Hu B, Cao W, Yu H (2017) Investigation on compression behavior of TZM and La2O3 doped TZM Alloys at high temperature. Mater Sci Eng, A 687:276–280CrossRefGoogle Scholar
  6. 6.
    Gao Z, Li H, Lai Y, Ou Y, Li D (2013) Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Mater Sci Eng A 580:92–98CrossRefGoogle Scholar
  7. 7.
    Grandell L, Lehtilä A, Kivinen M, Koljonen T, Kihlman S, Lauri LS (2016) Role of critical metals in the future markets of clean energy technologies. Renew Energ. 95:53–62CrossRefGoogle Scholar
  8. 8.
    Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N, Tuduri J, Deady EA, Sadeghi M, Schiellerup H, Müller A, Bertrand G, Arvanitidis N, Eliopoulos DG, Shaw RA, Thrane K, Keulen N (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856CrossRefGoogle Scholar
  9. 9.
    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Pontikes Y (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod. 99:17–38CrossRefGoogle Scholar
  10. 10.
    Kasai N, Takasaki Y, Shibayama A, Inoue R (2015) Removal of rare earth elements from scrap using iron- and steelmaking processes. Proceedings of the 6th International Congress on the Science and Technology of Steelmaking, ICS 2015: pp. 970–971Google Scholar
  11. 11.
    Mueller SR, Wäger PA, Widmer R, Williams ID (2015) A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Waste Manage 45:226–234CrossRefGoogle Scholar
  12. 12.
    Yanga X, Zhang J, Fang X (2014) Rare earth element recycling from waste nickel-metal hydride batteries. J Hazard Mater 279:384–388CrossRefGoogle Scholar
  13. 13.
    Yanga F, Kubota F, Baba Y, Kamiya N, Goto M (2013) Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J Hazard Mater 254–255:79–88CrossRefGoogle Scholar
  14. 14.
    Panda R, Kumari A, Kumar Jha M, Hait J, Kumar V, Rajesh Kumar J, Lee JY (2014) Leaching of rare earth metals (REMs) from Korean monazite concentrate. J Ind Eng Chem 20:2035–2042CrossRefGoogle Scholar
  15. 15.
    Zakrzewska-Koltuniewicza G, Herdzik-Koniecko I, Cojocaru C, Chajduka E (2014) Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J Hazard Mater 275:136–145CrossRefGoogle Scholar
  16. 16.
    Shokobayev NM, Bouffier C, Dauletbakov TS (2015) Rare earth metals sorption recovery from uranium in situ leaching process solutions. Rare Met 34:195–201CrossRefGoogle Scholar
  17. 17.
    Kumar Jha M, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 161:77–101CrossRefGoogle Scholar
  18. 18.
    Hamed M, Hilal MA, Borai EH (2016) Chemical distribution of hazardous natural radionuclides during monazite mineral processing. J Environ Radioactiv. 162–163:166–171CrossRefGoogle Scholar
  19. 19.
    Mala H, Tomasek L, Rulik P, Beckova V, Hulka J (2016) Size distribution of aerosol particles produced during mining and processing uranium ore. J Environ Radioactiv 157:97–101CrossRefGoogle Scholar
  20. 20.
    Kosynkin VD, Moiseev SD, Vdovichev VS (1995) Cleaning rare earth elements from actinium. J Alloy Compd 225:320–323CrossRefGoogle Scholar
  21. 21.
    Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28CrossRefGoogle Scholar
  22. 22.
    Zhu Z, Pranolo Y, Cheng CY (2015) Separation of uranium and thorium from rare earths for rare earth production—a review. Miner Eng 77:185–196CrossRefGoogle Scholar
  23. 23.
    Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earth. CRC Press, Boca RatonGoogle Scholar
  24. 24.
    Li D, Zuo Y, Meng S (2004) Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J Alloy Compd 374:431–433CrossRefGoogle Scholar
  25. 25.
    Yoon H-S, Kim C-J, Chung K-W, Kim S-D, Lee J-Y, Rajesh Kumar J (2016) Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processing. Hydrometallurgy 165:27–43CrossRefGoogle Scholar
  26. 26.
    Rychkov VN, Kirillov EV, Kirillov SV, Bunkov GM, Mashkovtsev MA, Botalov MS, Volkovich VA, Semenishchev VS (2016) Selective ion exchange recovery of rare earth elements from uranium mining solutions. AIP Conf Proc 1767:020017CrossRefGoogle Scholar
  27. 27.
    Magill J, Pfenning G, Dreher R, Soti Z (2012) Chart of the Nuclides (Karlsruher Nuclidkarte), 8th edn. Nucleonica GmbH, KarlsruherGoogle Scholar
  28. 28.
    Sharygin LM (2012) Thermally stable inorganic sorbents. Ural branch of the Russian Academy of Sciences, EkaterinburgGoogle Scholar
  29. 29.
    Ostapenko V, Vasiliev A, Lapshina E, Ermolaev S, Aliev R, Totskiy Yu, Zhuikov B, Kalmykov S (2015) Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J Radioanal Nucl Chem 306:707–711CrossRefGoogle Scholar
  30. 30.
    Kirby HW, Morss LR (2006) Actinium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, New York, pp 18–51CrossRefGoogle Scholar
  31. 31.
    Belova VV, Egorova NS, Voshkin AA, Khol’kin AI (2015) Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants. Theor Found Chem Eng 49:545–549CrossRefGoogle Scholar
  32. 32.
    Wang Y, Wu L, Yang Y, Feng W, Yuan L (2015) Efficient separation of thorium from rare earths with a hydrogen-bonded oligoaramide extractant in highly acidic media. J Radioanal Nucl Chem 305:543–549CrossRefGoogle Scholar
  33. 33.
    Samsonov MD, Trofimov TI, Kulyako YM, Vinokurov SE, Malikov DA, Batorshin GS, Myasoedov BF (2015) Recovery of rare earth elements, uranium, and thorium from monazite concentrate by supercritical fluid extraction. Radiochemistry 57:343–347CrossRefGoogle Scholar
  34. 34.
    Samsonov MD, Trofimov TI, Kulyako YM, Malikov DA, Myasoedov BF (2016) Supercritical fluid extraction of rare earth elements, thorium and uranium from monazite concentrate and phosphogypsum using carbon dioxide containing tributyl phosphate and di-(2-ethylhexyl)phosphoric acid. Russ J Phys Chem B 10:1078–1084CrossRefGoogle Scholar
  35. 35.
    Szeglowski Z, Kubica B (1990) Influence of rare earth elements on extraction of actinium with di-(2-ethylhexyl)phosphoric acid from inorganic acid solutions. J Radioanal Nucl Chem 143:389–395CrossRefGoogle Scholar
  36. 36.
    Mikhailychenko AN, Goryacheva EG, Aksenova PM, Denisof AF (1982) Lanthanum and actinium extraction by mixture of trialkylmethylammonium nitrate and TBP. Radiochemistry 2:207–209Google Scholar
  37. 37.—The Global Source for Metals Pricing: Accessed 10 March, 2018

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Vladimir N. Rychkov
    • 1
  • Vladimir S. Semenishchev
    • 2
  • Evgeny V. Kirillov
    • 1
  • Sergey V. Kirillov
    • 1
  • Viktoria G. Ryabukhina
    • 2
  • Denis V. Smyshlyaev
    • 1
  • Grigory M. Bunkov
    • 1
  • Maxim S. Botalov
    • 1
  1. 1.Department of Rare Metals and NanomaterialsUral Federal UniversityEkaterinburgRussia
  2. 2.Department of Radiochemistry and Applied EcologyUral Federal UniversityEkaterinburgRussia

Personalised recommendations