Selective extraction of plutonium(IV) over uranium(VI), americium(III), europium(III) and zirconium(IV) with bidentate O-phenoxydiamide ligands: experimental and theoretical study

  • Cong Huang
  • Hongbin Lv
  • Chen Zuo
  • Zhongwei Yuan
  • Weifang Zheng
  • Taihong Yan


The performance of a series of novel O-phenoxydiamides extracting Zr(IV), Eu(III), U(VI), Pu(IV) and Am(III) was studied. The result of extraction experiments showed that the coordination abilities of these five congeneric O-phenoxydiamides decrease in the order of CycleDODA > PhenylDODA > ButylDODA > HexylDODA > BenzoDODA, the abilities of different metal ions coordinating with the same ligand decrease in the order of Pu(IV) ≫ U(VI) > Zr(IV), Eu(III), Am(III). At HNO3 concentration of 5.0 mol/L, the distribution ratio of BenzoDODA/n-dodecane extracting Pu(IV) is much larger than those of other metal ions, the separation factors of Pu(IV) over Eu(III), Zr(IV), U(VI) and Am(III) are between 20 and 300, which can be used for recovering Pu(IV) selectively from highly acidic liquid waste. The density functional theory (DFT) calculation of the 25 complexes in geometrical structure, Mayer bond order (MBO) and energy was further studied, the result is consistent with the experimental result.


Selective extraction Plutonium(IV) O-phenoxydiamide DFT calculation 



This work was supported by the Major Program “Research on Actinide Chemistry in the Complex System of Spent Fuel Reprocessing” of the National Natural Science Foundation of China (Grant 21790370).


  1. 1.
    Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66(1):144–166CrossRefGoogle Scholar
  2. 2.
    Law JD, Brewer KN, Herbst RS (1999) Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste. Waste Manage 19(1):27–37CrossRefGoogle Scholar
  3. 3.
    Nash K, Choppin G (1997) Separations chemistry for actinide elements: recent developments and historical perspective. Sep Sci Technol 32(1–4):255–274CrossRefGoogle Scholar
  4. 4.
    Su DP, Liu Y, Li SM, Ding SD, Jin YD, Wang ZP, Hu XY, Zhang LR (2017) Selective extraction of americium(III) over europium(III) ions with pyridylpyrazole ligands: structure—property relationships. Eur J Inorg Chem 3:651–658CrossRefGoogle Scholar
  5. 5.
    Silverio LB, Lamas WDQ (2011) An analysis of development and research on spent nuclear fuel reprocessing. Energ Policy 39(1):281–289CrossRefGoogle Scholar
  6. 6.
    Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3—n-dodecane system. Solvent Extr Ion Exc 19(1):91–103CrossRefGoogle Scholar
  7. 7.
    Sasaki Y, Morita Y, Kitatsuji Y, Kimura T (2010) Extraction behavior of actinides and metal ions by the promising extractant, N,N,N′,N′-tetraoctyl-3,6-dioxaoctanediamide (DOODA). Solvent Extr Ion Exc 28(3):335–349CrossRefGoogle Scholar
  8. 8.
    Ruhela R, Panja S, Tomar BS, Mahajanc MA, Sawantc RM, Tripathib SC, Singha AK, Gandhib PM, Hublia RC, Suria AK (2012) Bis-(2-ethylhexyl) carbamoyl methoxy phenoxy-bis-(2-ethylhexyl) acetamide [BenzoDODA]—first selective extractant for plutonium(IV) recovery (SEPUR) from acidic media. Tetrahedron Lett 53(40):5434–5436CrossRefGoogle Scholar
  9. 9.
    Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20CrossRefGoogle Scholar
  10. 10.
    Frisch MJ, et al (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CTGoogle Scholar
  11. 11.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  12. 12.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRefGoogle Scholar
  13. 13.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  14. 14.
    Dolg M, Stoll H, Preuss H (1989) Energy-adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90:1730CrossRefGoogle Scholar
  15. 15.
    Cao XY, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct 673:203CrossRefGoogle Scholar
  16. 16.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  17. 17.
    Lan JH, Shi WQ, Yuan LY, Zhao YL, Li J, Chai ZF (2011) Trivalent actinide and lanthanide separations by tetradentate nitrogen ligands: a quantum chemistry study. Inorg Chem 50:9230CrossRefGoogle Scholar
  18. 18.
    Lan JH, Shi WQ, Yuan LY, Feng YX, Zhao YL, Chai ZF (2012) Thermodynamic study on the complexation of Am(III) and Eu(III) with tetradentate nitrogen ligands: a probe of complex species and reactions in aqueous solution. J Phys Chem A 116:504CrossRefGoogle Scholar
  19. 19.
    Lan JH, Shi WQ, Yuan LY, Li J, Zhao YL, Chai ZF (2012) Recent advances in computational modeling and simulations on the An (III)/Ln (III) separation process. Coord Chem Rev 256:1406–1417CrossRefGoogle Scholar
  20. 20.
    Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct 46:41–62CrossRefGoogle Scholar
  21. 21.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  22. 22.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  23. 23.
    Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362CrossRefGoogle Scholar
  24. 24.
    Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J Am Chem Soc 128:278–290CrossRefGoogle Scholar
  25. 25.
    Liu S (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126(24):244103CrossRefGoogle Scholar
  26. 26.
    Pahan S, Boda A, Ali SM (2015) Density functional theoretical analysis of structure, bonding, interaction and thermodynamic selectivity of hexavalent uranium(UO2 2+) and tetravalent plutonium(Pu4+) ion complexes of tetramethyl diglycolamide (TMDGA). Theor Chem Acc 134(4):1–16CrossRefGoogle Scholar
  27. 27.
    Frisch A, Nielsen AB, Holder AJ (2000) Gaussview Users Manual. Gaussian Inc, PittsburgGoogle Scholar
  28. 28.
    Hoppe R (1970) The coordination number—an “inorganic chameleon”. Angew Chem Int Edit 9(1):25–34CrossRefGoogle Scholar
  29. 29.
    Denecke MA, Panak PJ, Burdet F, Weigl M, Geist A, Klenze R, Mazzanti M, Gompper K (2007) A comparative spectroscopic study of U(III)/Am(III) and Ln(III) complexed with N-donor ligands. Cr Chim 10(10–11):872–882CrossRefGoogle Scholar
  30. 30.
    Verma PK, Kumari N, Pathak PN, Sadhu B, Sundararajan M, Aswal VK, Mohapatra PK (2014) Investigations on preferential Pu(IV) extraction over U(VI) by N,N-dihexyloctanamide versus tri-n-butyl phosphate: evidence through small angle neutron scattering and DFT studies. J Phys Chem A 118(22):3996–4004CrossRefGoogle Scholar
  31. 31.
    Xiao CL, Wu QY, Wang CZ, Zhao YL, Chai ZF, Shi WQ (2014) Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV, VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg Chem 53(20):10846–10853CrossRefGoogle Scholar
  32. 32.
    Kolařík Z, Dražanová S, Chotívka V (1971) Acidic organophosphorus extractants—XII: effect of the extractant structure on the extraction of lanthanides(III). J Inorg Nucl Chem 33(4):1125–1133CrossRefGoogle Scholar
  33. 33.
    Wu QY, Wang CZ, Lan JH, Xiao CL, Wang XK, Zhao YL, Chai ZF, Shi WQ (2014) Theoretical investigation on multiple bonds in terminal actinide nitride complexes. Inorg Chem 53(18):9607CrossRefGoogle Scholar
  34. 34.
    Clouston LJ, Siedschlag RB, Rudd PA, Planas N, Hu S, Miller AD, Gagliardi L, Lu CC (2013) Systematic variation of metal-metal bond order in metal-chromium complexes. J Am Chem Soc 135(35):13142–13148CrossRefGoogle Scholar
  35. 35.
    Cramer RE, Edelmann F, Mori AL, Roth S, Gilje JW, Tatsumi K, Nakamura A (1988) Preparation, structure, and bonding in an organoactinide imide, Cp3AnNPPh3 (An = uranium, thorium): a comparison of the bonding of uranium to nitrogen- and oxygen-donor ligands. Organometallics 7(4):841–849CrossRefGoogle Scholar
  36. 36.
    Bryantsev VS, Hay BP (2015) Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton T 44(17):7935CrossRefGoogle Scholar
  37. 37.
    Bühl M, Sieffert N, Chaumont A, Wipff G (2011) Water versus acetonitrile coordination to uranyl. Density functional study of cooperative polarization effects in solution. Inorg Chem 50(1):299–308CrossRefGoogle Scholar
  38. 38.
    Zhang JP, Chang L, Ouyang YG (2010) Effect of temperature, acidity and uranium saturation on distribution coefficient of Pu(IV) in 30%TBP/OK-HNO3 system. Ann Rep China Inst Atom Energy 1:283–284Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Cong Huang
    • 1
  • Hongbin Lv
    • 1
  • Chen Zuo
    • 1
  • Zhongwei Yuan
    • 1
  • Weifang Zheng
    • 1
  • Taihong Yan
    • 1
  1. 1.Department of RadiochemistryChina Institute of Atomic EnergyBeijingP. R. China

Personalised recommendations