Advertisement

Irradiation of glyceraldehyde under simulated prebiotic conditions: Study in solid and aqueous state

  • E. Aguilar-Ovando
  • J. Cruz-Castañeda
  • T. Buhse
  • C. Fuentes-Carreón
  • S. Ramos-Bernal
  • A. Heredia
  • A. Negrón-Mendoza
Article
  • 72 Downloads

Abstract

We investigated the radiolysis of dl-glyceraldehyde in a solid state and in an aqueous solution. The catalytic effect of a clay onto glyceraldehyde was also studied. We carried out the irradiation in a 60Co gamma ray source (Gammabeam 650 PT), with doses up to 360 kGy, at three temperatures (77, 198 and 295 K). For the analysis, we used various spectroscopic and chromatographic analytical methods. The results show that this compound is labile under irradiation and that it forms malondialdehyde, glycolaldehyde and other sugar-like compounds that are important in chemical-evolution studies.

Keywords

Radiolysis Chemical evolution Origin of life Malondialdehyde Glyceraldehyde 

Notes

Acknowledgements

This work was supported by CONACyT (Grant No. C001-CONACyT-ANR-188689) and PAPIIT (Grant No. IN226817). J.C. received supported from a CONACyT fellowship and from the Posgrado en Ciencias Químicas. We thank Chem. Claudia Camargo, M.Sc. Benjamin Leal, and Phys. Francisco Flores for their technical assistance.

References

  1. 1.
    Kochetkov NK, Kudrjashov LI, Chlenov MA (1979) Radiation chemistry of carbohydrates. Elsevier Ltd, AmsterdamGoogle Scholar
  2. 2.
    von Sonntag C, Tipson RS (2013) In: Horton D (ed) Advances in carbohydrate chemistry and biochemistry, 1st edn. Academic Press, New YorkGoogle Scholar
  3. 3.
    Meinert C, Myrgorodska I, De Marcellus P, Buhse T, Nahon L, Hoffmann SV, Lle d’Hendecourt, Meierhenrich UJ (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212CrossRefGoogle Scholar
  4. 4.
    Weber A, Pizzarello LS (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecule evolution. PNAS 103:12713–12717CrossRefGoogle Scholar
  5. 5.
    Kofoed J, Reymond JL, Darbre T (2005) Prebiotic carbohydrates synthesis: zinc-proline catalyzes direct aqueous aldol reactions of α-hidroxy aldehydes and ketones. Org Biomol Chem 3:1850–1855CrossRefGoogle Scholar
  6. 6.
    Chen MC, Cafferty BJ, Mamajanov I, Gállego I, Khanam J, Krishnamurthy R, Hud NV (2014) Spontaneous prebiotic formation of a β-ribofuranoside that self-assembles with a complementary heterocycle. J Am Chem Soc 136:5640–5646CrossRefGoogle Scholar
  7. 7.
    Jalbout AF, Abrell L, Adamowicz L, Polt R, Apponi AJ, Ziurys LM (2007) Sugar synthesis from a gas-phase formose reaction. Astrobiology 7(3):433–442CrossRefGoogle Scholar
  8. 8.
    Draganic IG, Draganic ZD, Adloff JP (1990) Radiation and radioactivity on Earth and beyond. CRC Press Inc, Boca RatonGoogle Scholar
  9. 9.
    Draganic I, Draganic Z (1998) Radiation-chemical approaches to comets and interstellar dust. J Chim Phys 85:55–61CrossRefGoogle Scholar
  10. 10.
    Mosqueira FG, Albarrán G, Negrón-Mendoza A (1996) A review of conditions affecting the radiolysis due to 40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry. Orig Life Evol Bios 26:75–94CrossRefGoogle Scholar
  11. 11.
    Cataldo F, Ursini O, Angelini G, Iglesias-Groth S, Manchado A (2011) Radiolysis and radioracemization of 20 amino acids from the beginning of the solar system. Rend Fis Acc Lincei 22:81–94CrossRefGoogle Scholar
  12. 12.
    Ramos-Bernal S, Negrón-Mendoza A (1992) A radiation heterogeneous processes of 14C-acetic acid adsorbed in Na-montmorillonite. J Radioanal Nucl Chem 160:487CrossRefGoogle Scholar
  13. 13.
    Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New YorkGoogle Scholar
  14. 14.
    Kwon TW, Watts BM (1963) Determination of malonaldehyde by ultraviolet spectrophotometry. J Food Sci 28:627–630CrossRefGoogle Scholar
  15. 15.
    Cruz-Castañeda J, Aguilar-Ovando E, Buhse T, Ramos-Bernal S, Meléndez-López A, Camargo-Raya C, Fuentes-Carreón C, Negrón-Mendoza A (2017) The importance of glyceraldehyde radiolysis in chemical evolution. J Radioanal Nucl Chem 311:1135–1141CrossRefGoogle Scholar
  16. 16.
    Kobayashi Y, Igarashi T, Takahasi H, Higasi K (1976) Infrared and Raman studies of the dimeric structures of 1,3-dihydroxiacetone, D (+)- and dl-glyceraldehyde. J Mol Struct 35:85–99CrossRefGoogle Scholar
  17. 17.
    Steenken S, Schulte-Frohlinde D (1973) Fragmentation of radical derived from glycolaldehyde and glyceraldehyde in aqueous solution: an EPR study. Tetrahedron Lett 9:653–654CrossRefGoogle Scholar
  18. 18.
    Steenken S (1979) Oxidation of phenolates and phenylenediamines by 2-alkononyl radicals produced from 1,2-dihydroxy- and 1-hydroxy-2-alkoxyalkyl radicals. Phys Chem 83:595–599CrossRefGoogle Scholar
  19. 19.
    Fuchs E, Heusinger H (1995) Sonolysis and radiolysis of glyceraldehyde deaerated aqueous solution. Ultrason Sonochem 2:S105–S109CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • E. Aguilar-Ovando
    • 1
    • 2
  • J. Cruz-Castañeda
    • 1
    • 3
  • T. Buhse
    • 2
  • C. Fuentes-Carreón
    • 1
    • 4
  • S. Ramos-Bernal
    • 1
  • A. Heredia
    • 1
  • A. Negrón-Mendoza
    • 1
  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
  2. 2.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  3. 3.Posgrado en Ciencias QuímicasUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico
  4. 4.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico

Personalised recommendations