Raman spectroscopic study of the structural change of uranium–thorium-mixed oxides before and after oxidation

  • Jeongmook Lee
  • Jandee Kim
  • Young-Sang Youn
  • Jong-Yun Kim
  • Sang Ho Lim
Article
  • 57 Downloads

Abstract

UO2 pellets doped with 1, 5 and 10 mol% Th before and after oxidation were analyzed by using Raman spectroscopy to investigate the Th doping effect on the structural changes during oxidation of UO2. While the Raman spectra of all sample pellets showed a close-to-perfect fluorite structure before oxidation, those of oxidized (U1−yTh y )O2+x (0.03 ≤ x ≤ 0.06) pellets showed distinct defect structures after oxidation at 1150 °C with CO/CO2 = 0.001. The increasing relative ratio of first-order longitudinal optical modes of (U1−yTh y )O2+x with increasing doping levels should represent the defect structure due to the Th doping effect.

Keywords

Mixed oxide Actinide oxide Uranium oxide Raman spectroscopy Oxidation Defect structure 

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; No. 2017M2A8A5014754).

References

  1. 1.
    Kleykamp H (1985) The chemical state of the fission products in oxide fuels. J Nucl Mater 131:221–246CrossRefGoogle Scholar
  2. 2.
    Bruno J, Ewing RC (2006) Spent nuclear fuel. Elements 2:343–349CrossRefGoogle Scholar
  3. 3.
    Konings RJM, Wiss T, Beneš O (2015) Predicting material release during a nuclear reactor accident. Nat Mater 14:247–252CrossRefGoogle Scholar
  4. 4.
    Ewing RC (2015) Long-term storage of spent nuclear fuel. Nat Mater 14:252–257CrossRefGoogle Scholar
  5. 5.
    Razdan M, Shoesmith DW (2013) Influence of trivalent-dopants on the structural and electrochemical properties of uranium dioxide (UO2). J Electrochem Soc 161:H105–H113CrossRefGoogle Scholar
  6. 6.
    Talip Z, Wiss T, Raison PE, Paillier J, Manara D, Somers J et al (2015) Raman and X-ray studies of uranium–lanthanum-mixed oxides before and after air oxidation. J Am Ceram Soc 98:2278–2285CrossRefGoogle Scholar
  7. 7.
    Lee J, Kim J, Youn Y-S, Kim J-G, Ha Y-K, Kim J-Y (2017) Raman study on structure of U1−yGdyO2−x (y = 0.005, 0.01, 0.03, 0.05 and 0.1) solid solutions. J Nucl Mater 486:216–221CrossRefGoogle Scholar
  8. 8.
    Jégou C, Caraballo R, Peuget S, Roudil D, Desgranges L, Magnin M (2010) Raman spectroscopy characterization of actinide oxides (U1−yPuy)O2: resistance to oxidation by the laser beam and examination of defects. J Nucl Mater 405:235–243CrossRefGoogle Scholar
  9. 9.
    Böhler R, Welland MJ, Prieur D, Cakir P, Vitova T, Pruessmann T et al (2014) Recent advances in the study of the UO2–PuO2 phase diagram at high temperatures. J Nucl Mater 448:330–339CrossRefGoogle Scholar
  10. 10.
    Talip Z, Peuget S, Magnin M, Berardo L, Valot C, Vauchy R et al (2017) Raman microspectroscopic studies of unirradiated homogeneous (U0.76Pu0.24)O2+x: the effects of Pu content, non-stoichiometry, self-radiation damage and secondary phases. J Raman Spectrosc 48:765–772CrossRefGoogle Scholar
  11. 11.
    Rao R, Bhagat RK, Salke NP, Kumar A (2014) Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO2–UO2) fuel materials. Appl Spectrosc 68:44–48CrossRefGoogle Scholar
  12. 12.
    Anderson JS, Edgington DN, Roberts LEJ, Wait E (1954) The oxides of uranium. Part IV. The system UO2–ThO2–O. J Chem Soc.  https://doi.org/10.1039/JR9540003324 Google Scholar
  13. 13.
    Cohen I, Berman RM (1966) A metallographic and X-ray study of the limits of oxygen solubility in the UO2-ThO2 system. J Nucl Mater 18:77–107CrossRefGoogle Scholar
  14. 14.
    Anthonysamy S, Joseph K, Gnanasekaran T, Rao PRV (2000) Studies on the kinetics of oxidation of urania ± thoria solid solutions in air. J Nucl Mater 280:25–32CrossRefGoogle Scholar
  15. 15.
    Ha Y-K, Kim J-G, Park Y-J, Kim W-H (2005) Effect of a tetravalnet dopant, Th4+ on the oxidation of uranium dioxide. Key Eng Mater 277–279:654–659CrossRefGoogle Scholar
  16. 16.
    Cakir P, Eloirdi R, Huber F, Konings RJM, Gouder T (2017) Thorium effect on the oxidation of uranium: photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1−xThx)O2 (x = 0 to 1) thin films. Appl Surf Sci 393:204–211CrossRefGoogle Scholar
  17. 17.
    Pai RV, Sahu M, Pai MR, Jain D, Jagannath Mukerjee SK (2017) Oxidation and thermo physical studies of non-stoichiometric thorium uranium oxides prepared by gel combustion method. Thermochim Acta 654:8–17CrossRefGoogle Scholar
  18. 18.
    Jégou C, Caraballo R, De Bonfils J, Broudic V, Peuget S, Vercouter T et al (2010) Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: solution chemistry and surface characterization by Raman spectroscopy. J Nucl Mater 399:68–80CrossRefGoogle Scholar
  19. 19.
    Allen GC, Butler IS (1987) Characterisation of uranium oxides by micro-Raman spectroscopy. J Nucl Mater 144:17–19CrossRefGoogle Scholar
  20. 20.
    Graves PR (1990) Raman microprobe spectroscopy of uranium dioxide single crystals and ion implanted polycrystals. Appl Spectrosc 44:1665–1667CrossRefGoogle Scholar
  21. 21.
    Begun GM, Haire RG, Wilmarth WR, Peterson JR (1990) Raman spectra of some actinide dioxides and of EuF2. J Less Common Met 162:129–133CrossRefGoogle Scholar
  22. 22.
    Manara D, Renker B (2003) Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J Nucl Mater 321:233–237CrossRefGoogle Scholar
  23. 23.
    Livneh T, Sterer E (2006) Effect of pressure on the resonant multiphonon Raman scattering in UO2. Phys Rev B 73:85118CrossRefGoogle Scholar
  24. 24.
    Desgranges L, Pontillon Y, Matheron P, Marcet M, Simon P, Guimbretière G et al (2012) Miscibility gap in the U–Nd–O phase diagram: a new approach of nuclear oxides in the environment? Inorg Chem 51:9147–9149CrossRefGoogle Scholar
  25. 25.
    He H, Shoesmith D (2010) Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO2+x. Phys Chem Chem Phys 12:8108–8117CrossRefGoogle Scholar
  26. 26.
    Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullins DR, Idriss H (2007) The reactions of water vapour on the surfaces of stoichiometric and reduced uranium dioxide: a high resolution XPS study. Catal Today 120:151–157CrossRefGoogle Scholar
  27. 27.
    Desgranges L, Baldinozzi G, Simon P, Guimbretière G, Canizares A (2012) Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J Raman Spectrosc 43:455–458CrossRefGoogle Scholar
  28. 28.
    Elorrieta JM, Bonales LJ, Rodríguez-Villagra N, Baonza VG, Cobos J (2016) A detailed Raman and X-ray study of UO2+x oxides and related structure transitions. Phys Chem Chem Phys 18:28209–28216CrossRefGoogle Scholar
  29. 29.
    Ugajin M (1982) Oxygen potentials of (Th, U)O2+x solid solutions. J Nucl Mater 110:140–146CrossRefGoogle Scholar
  30. 30.
    Ugajin M (1983) Measurements of O/U ratio and oxygen potential for UO2+x (0 ≤ x ≤ 0.1). J Nucl Sci Technol 20:228–236CrossRefGoogle Scholar
  31. 31.
    Lindemer TB, Sutton AL (1988) Study of nonstoichiometry of (Ul−zGdzOx). J Am Ceram Soc 71:553–561CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of Radiochemistry & Nuclear NonproliferationUniversity of Science & TechnologyDaejeonRepublic of Korea

Personalised recommendations