Skip to main content
Log in

Studies on distribution of radionuclides and behavior of clay minerals in the soils of river environs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present investigation, the activity concentrations of radionuclides in the soils of Cauvery river environs were measured using HPGe gamma ray spectrometer. FTIR spectroscopy was used to find minerals present in soil samples. The mean values of 40K, 226Ra and 232Th in the soil samples was found to be 132.9, 22.95 and 26.88 Bq kg−1 respectively. The estimated absorbed dose rate and hazard indices were found to be within the safety limits. The extinction coefficients for quartz, sepiolite and kaolinite in soil varied from 0.64 to 37.24, 0.39 to 34.47 and 9.66 to 35.81 respectively. The correlation matrix showed that the clay mineral like kaolinite influences the increase in activity concentration of radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNSCEAR (2000) United Nations Scientific Committee on the effect of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York

  2. Rangaswamy DR, Sannappa J (2016) Distribution of natural radionuclides and radiation level measurements in Karnataka State, India: an overview. J Radioanal Nucl Chem 310(1):1–12

    Article  CAS  Google Scholar 

  3. Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radiovactivity in some major rivers of costal Karnataka on the south west coast of India. J Environ Radioact 95:98–106

    Article  CAS  Google Scholar 

  4. Aytas S, Yusan S, Aslani MA, Karali T, Turkozu DA, Gok C, Erenturk S, Gokse M, Oguz FK (2012) Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. J Environ Sci Health Part A 47:2163–2172

    Article  CAS  Google Scholar 

  5. Ramasamy V, Paramasivama K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamilnadu, India. J Environ Radioact 127:64–74

    Article  CAS  Google Scholar 

  6. Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C 1:113–130

    Article  CAS  Google Scholar 

  7. Narayana Y, Kaliprasad CS, Sanjeev Ganesh (2016) Natural radionuclide levels in sediments of Cauvery riverine environment. Radiat Prot Dosim 171(2):229–233

    Article  CAS  Google Scholar 

  8. Kaliprasad CS, Narayana Y (2016) Speciation and behaviour of 210Po and 210Pb in the riverine ecosystem of Cauvery, a major river of south India. Radiochemistry 58(4):431–437

    Article  CAS  Google Scholar 

  9. EML Procedure Manual (1983) In: Herbert L. volchok, Gail de Planque (ed), 26th edn, Environment Measurement Laboratory, U.S. Department of energy

  10. Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radiovactivity in some major rivers of costal Karnataka on the south west coast of India. J Environ Radioact 95:98–106

    Article  CAS  Google Scholar 

  11. Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediment and river bank soil of Kallada river of Kerala, South India and its associated radiation risk. Radiat Prot Dosim 171(2):271–276

    Article  CAS  Google Scholar 

  12. Mullainathan S, Nithiyanantham S (2016) FTIR spectroscopic studies of rock sediments in Namakkal, Tamil Nadu, South India, for vegetations. Environ Earth Sci 75:692

    Article  Google Scholar 

  13. Rajesh P, Joseph Vedhagiri S, Ramasamy V (2013) FTIR characterisation of minerals in charnockite rocks of Kalrayan Hills, India. Arch Phys Res 4(4):5–13

    Google Scholar 

  14. Krishnamoorthy N, Mullainathan S, Mehra R (2015) Variation of naturally occurring radionuclides, dose rate and mineral characteristics with particle size and altitude in bottom sediments of a river originating from Anamalai hills in the Western Ghats of India. Environ Earth Sci 74(4):3467–3483

    Article  CAS  Google Scholar 

  15. Santawamaitre T (2012) An evaluation of the level of naturally occurring radioactive materials in soil samples along the Chao Phraya river Basin. PhD thesis. University of Surrey

  16. Adukpo OK, Faanu A, Lawluvi H, Tettey Larbi L, Emi Reynolds G, Darko EO, Kansaana C, Kpeglo DO, Awudu AR, Glover ET, Amoah PA, Efa AO, Agyemang LA, Agyeman BK, Kpordzro R, Doe AI (2015) Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the Central and Western Regions of Ghana. J Radioanal Nucl Chem 303:1679–1685

    CAS  Google Scholar 

  17. Lu X, Zhang X, Wang F (2008) Natural radioactivity in sediment of Wei river, China. Environ Geol 53(7):1475–1481

    Article  CAS  Google Scholar 

  18. Akozcan S (2014) Annual effective dose of naturally occurring radionuclides in soil and sediment. Toxicol Environ Chem 96(3):379–386

    Article  CAS  Google Scholar 

  19. Nasrabadi MN, Mostajaboddavati M, Hajialiani G (2014) Natural radioactivity distribution in riverbank soils along the Dez river basin of Iran. World J Environ Res 4(1):07–22

    Google Scholar 

  20. Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu NT, Kprkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  Google Scholar 

  21. Yadav Manjulata, Rawat Mukesh, Dangwal Anoop, Prasad Mukesh, Gusain GS, Ramola RC (2015) Analysis of natural radionuclides in soil samples of purola area of Garhwal himalaya, India. Radiat Prot Dosim 167:215–218

    Article  CAS  Google Scholar 

  22. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, waste and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  23. Sac MM, Ortabuk F, Kumru MN, Ichedef M, Sert S (2012) Determination of radioactivity and heavy metals of Bakirçay river in Western Turkey. Appl Radiat Isot 70:2494–2499

    Article  CAS  Google Scholar 

  24. Kritsananuwat R, Sahoo SK, Fukushi M, Pangza K, Chanyotha S (2015) Radiological risk assessment of 238U, 232Th and 40K in Thailand coastal sediments at selected areas proposed for nuclear power plant sites. J Radioanal Nucl Chem 303(1):325–334

    Article  CAS  Google Scholar 

  25. International Commission on Radiological Protection (2007) Recommendations of the ICRP, publication 103. Pergamon Press, Oxford

    Google Scholar 

  26. El-Arabi AM (2007) 226Ra, 232Th and 40K concentrations in igneous rocks from eastern desert, Egypt and its radiological implications. Radiat Meas 42:94–100

    Article  CAS  Google Scholar 

  27. Zaim Nimet, Atlas Hakan (2016) Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey. J Radioanal Nucl Chem 310(3):959–967

    Article  CAS  Google Scholar 

  28. Fysh SA, Fredericks PM (1983) Fourier transform infrared studies of aluminous goethites and haematites. Clays Clay Miner 31(5):377–381

    Article  CAS  Google Scholar 

  29. Ramasamy V, Rajkumar P, Ponnusamy V (2009) Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian J Phys 83(9):1295–1308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Kaliprasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliprasad, C.S., Vinutha, P.R. & Narayana, Y. Studies on distribution of radionuclides and behavior of clay minerals in the soils of river environs. J Radioanal Nucl Chem 316, 609–617 (2018). https://doi.org/10.1007/s10967-018-5825-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5825-1

Keywords

Navigation