Simulation of cesium desorption behavior of porous nickel

Abstract

To achieve the application of artificial plasma technology in high technology, the desorption behavior of cesium metals with low ionization characteristics in porous nickel is studied in this paper. The simulated results, which are consistent with the experimental desorption results, demonstrated that the liquid-phase rate of cesium gradually decreased along the axial direction and the distribution of liquid fraction exhibited a similar trend. The results that the removal efficiency reached above 95% provide a reference for studying the controllability of release of cesium metal and the adsorption and desorption of other alkaline-earth metal experiments with porous nickel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Press C (2001) Industrial plasma engineering. CRC Press, Boca Raton

    Google Scholar 

  2. 2.

    Plasma Technology (2011) 53rd Annual Meeting of the APS Division of Plasma Physics. American Physical Society

  3. 3.

    Bick M, Prinz H (2000) Cesium and cesium compounds. Wiley‐VCH Verlag GmbH & Co, New Jersey, Düsseldorf

    Google Scholar 

  4. 4.

    Zhdanov BV, Ehrenreich T, Knize RJ (2006) Highly efficient optically pumped cesium vapor laser. Opt Commun 260:696–698

    Article  CAS  Google Scholar 

  5. 5.

    Chirov AA, Belyakova NG (2013) Change in the transparency of thin cesium films on the glass surface of optical devices of spacecraft. J Surf Investig-X-Ra 7:1207–1211

    Article  CAS  Google Scholar 

  6. 6.

    Zhdanov BV, Knize RJ (2007) Diode-pumped 10 W continuous wave cesium laser. Opt Lett 32:167–2169

    Article  Google Scholar 

  7. 7.

    Zhanov BV, Ehrenreieh T, Knize RJ (2007) A laser diode array pumped cesium vapor laser. Proc SPIE 6454:64540M

    Article  CAS  Google Scholar 

  8. 8.

    Hunt M, Durston P, Plamer R (1996) Electronic and geometric structure of Cs on graphite. Surf Sci 364:266–272

    Article  CAS  Google Scholar 

  9. 9.

    Kosmulski M, Dawidowicz AL, Szczypa J (1989) Adsorption of cesium on, and desorption from, controlled porous glasses. J Radioanal Nucl Chem 131:377–383

    Article  CAS  Google Scholar 

  10. 10.

    Cornell RM (1993) Adsorption of cesium on mineral: a review. J Radioanal Nucl Chem 171:483–500

    Article  CAS  Google Scholar 

  11. 11.

    Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    Article  CAS  Google Scholar 

  12. 12.

    Kutahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  CAS  Google Scholar 

  13. 13.

    Yu HJ, Yao GC, Cheng Y, Zhu L, Jian XY, Wang Z, Chu Y, Jiang LJ (2008) Influence factors of sound absorption properties of closed-cell aluminum foam. Chin J Nonferrous Metal 18:1487

    CAS  Google Scholar 

  14. 14.

    Hamdan A, Loni MA, Alhusein M, Rudd CD, Long AC (2000) Behavior of core materials during resin transfer moulding of sandwich structures. Mater Sci Tech 16:929–934

    Article  Google Scholar 

  15. 15.

    Lu TJ, Valdevit L, Evans AG (2005) Active cooling by metallic sandwich structures with periodic cores. Prog Mater Sci 50:789–815

    Article  Google Scholar 

  16. 16.

    Staudhammer KP, Murr LE, Meyers MA (2001) Fundamental issues and application of shock-wave and high-strain-rate phenomena proceeding. Elsevier, Amsterdam, pp 429–433

    Google Scholar 

  17. 17.

    Ma YG, Zhang DX, Liu SM (2008) Development of vacuum distillation device for purify metal cesium. Vac Cryo 2:99–102

    Google Scholar 

  18. 18.

    Lee SS, Lee JY, Keener TC (2009) Bench-Scale studies of in-duct mercury capture using cupric chloride-impregnated carbons. Environ Sci Technol 43:2957–2962

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Hua XY, Zhou JS, Gao X, Li Q, Luo Z, Cen K (2011) Experimental investigation of mercury desorption on CeO2 impregnated activated coke. Proc CSEE 31:61–66

    Google Scholar 

  20. 20.

    Ho TC, Lee Y, Chu HW, Lin CJ, Hopper JR (2005) Modeling of mercury desorption from activated carbon at elevated temperatures under fluidized/fixed bed operations. Powder Technol 15:54–60

    Article  CAS  Google Scholar 

  21. 21.

    Qi LK, Jia YT (2005) Investigation of static adsorption of cesium from liquid sodium by reticulated vitreous carbon. J Nucl Radiochem 27:125–128

    CAS  Google Scholar 

  22. 22.

    Fluent A (2009) 12.0 Theory Guide. Ansys Inc., Canonsburg

    Google Scholar 

  23. 23.

    Bathen D, Breitbach M (2001) Adsorptionstechnik [s.l.]. VCH verlagsgesellschaft mbH, Hoboken

    Google Scholar 

  24. 24.

    Loh WH (1968) Jet, rocket, nuclear, ion and electric propulsion. Springer, Berlin

    Google Scholar 

  25. 25.

    Liu XP, Jiang Y, Zhang S, Li JX (2015) Melting process of porous-media-filled ice hold-over plate. Chem Eng Prog 43:3636–3643

    Google Scholar 

  26. 26.

    Davis JR (1998) Metals Handbook, desk edition, 2nd edn. ASM International, Ohio, p 148

    Google Scholar 

  27. 27.

    Khalilollahi A (1990) Industrial Heating (USA). In Wang JJ (Eds) Heat Treatment of Metals Abroad vol. 11, pp. 17–19

Download references

Acknowledgements

This work was financially supported by Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weijie Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Guo, B., Li, W. et al. Simulation of cesium desorption behavior of porous nickel. J Radioanal Nucl Chem 317, 277–285 (2018). https://doi.org/10.1007/s10967-018-5818-0

Download citation

Keywords

  • Simulation
  • Desorption
  • Porous nickel
  • Cesium