Advertisement

Simulation of cesium desorption behavior of porous nickel

  • Weijie HuEmail author
  • Bin Guo
  • Wenlong Li
  • Hongfei Wang
  • Haojing Wang
Article
  • 81 Downloads

Abstract

To achieve the application of artificial plasma technology in high technology, the desorption behavior of cesium metals with low ionization characteristics in porous nickel is studied in this paper. The simulated results, which are consistent with the experimental desorption results, demonstrated that the liquid-phase rate of cesium gradually decreased along the axial direction and the distribution of liquid fraction exhibited a similar trend. The results that the removal efficiency reached above 95% provide a reference for studying the controllability of release of cesium metal and the adsorption and desorption of other alkaline-earth metal experiments with porous nickel.

Keywords

Simulation Desorption Porous nickel Cesium 

Notes

Acknowledgements

This work was financially supported by Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences.

References

  1. 1.
    Press C (2001) Industrial plasma engineering. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Plasma Technology (2011) 53rd Annual Meeting of the APS Division of Plasma Physics. American Physical SocietyGoogle Scholar
  3. 3.
    Bick M, Prinz H (2000) Cesium and cesium compounds. Wiley‐VCH Verlag GmbH & Co, New Jersey, DüsseldorfCrossRefGoogle Scholar
  4. 4.
    Zhdanov BV, Ehrenreich T, Knize RJ (2006) Highly efficient optically pumped cesium vapor laser. Opt Commun 260:696–698CrossRefGoogle Scholar
  5. 5.
    Chirov AA, Belyakova NG (2013) Change in the transparency of thin cesium films on the glass surface of optical devices of spacecraft. J Surf Investig-X-Ra 7:1207–1211CrossRefGoogle Scholar
  6. 6.
    Zhdanov BV, Knize RJ (2007) Diode-pumped 10 W continuous wave cesium laser. Opt Lett 32:167–2169CrossRefGoogle Scholar
  7. 7.
    Zhanov BV, Ehrenreieh T, Knize RJ (2007) A laser diode array pumped cesium vapor laser. Proc SPIE 6454:64540MCrossRefGoogle Scholar
  8. 8.
    Hunt M, Durston P, Plamer R (1996) Electronic and geometric structure of Cs on graphite. Surf Sci 364:266–272CrossRefGoogle Scholar
  9. 9.
    Kosmulski M, Dawidowicz AL, Szczypa J (1989) Adsorption of cesium on, and desorption from, controlled porous glasses. J Radioanal Nucl Chem 131:377–383CrossRefGoogle Scholar
  10. 10.
    Cornell RM (1993) Adsorption of cesium on mineral: a review. J Radioanal Nucl Chem 171:483–500CrossRefGoogle Scholar
  11. 11.
    Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18CrossRefGoogle Scholar
  12. 12.
    Kutahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256CrossRefGoogle Scholar
  13. 13.
    Yu HJ, Yao GC, Cheng Y, Zhu L, Jian XY, Wang Z, Chu Y, Jiang LJ (2008) Influence factors of sound absorption properties of closed-cell aluminum foam. Chin J Nonferrous Metal 18:1487Google Scholar
  14. 14.
    Hamdan A, Loni MA, Alhusein M, Rudd CD, Long AC (2000) Behavior of core materials during resin transfer moulding of sandwich structures. Mater Sci Tech 16:929–934CrossRefGoogle Scholar
  15. 15.
    Lu TJ, Valdevit L, Evans AG (2005) Active cooling by metallic sandwich structures with periodic cores. Prog Mater Sci 50:789–815CrossRefGoogle Scholar
  16. 16.
    Staudhammer KP, Murr LE, Meyers MA (2001) Fundamental issues and application of shock-wave and high-strain-rate phenomena proceeding. Elsevier, Amsterdam, pp 429–433Google Scholar
  17. 17.
    Ma YG, Zhang DX, Liu SM (2008) Development of vacuum distillation device for purify metal cesium. Vac Cryo 2:99–102Google Scholar
  18. 18.
    Lee SS, Lee JY, Keener TC (2009) Bench-Scale studies of in-duct mercury capture using cupric chloride-impregnated carbons. Environ Sci Technol 43:2957–2962CrossRefPubMedGoogle Scholar
  19. 19.
    Hua XY, Zhou JS, Gao X, Li Q, Luo Z, Cen K (2011) Experimental investigation of mercury desorption on CeO2 impregnated activated coke. Proc CSEE 31:61–66Google Scholar
  20. 20.
    Ho TC, Lee Y, Chu HW, Lin CJ, Hopper JR (2005) Modeling of mercury desorption from activated carbon at elevated temperatures under fluidized/fixed bed operations. Powder Technol 15:54–60CrossRefGoogle Scholar
  21. 21.
    Qi LK, Jia YT (2005) Investigation of static adsorption of cesium from liquid sodium by reticulated vitreous carbon. J Nucl Radiochem 27:125–128Google Scholar
  22. 22.
    Fluent A (2009) 12.0 Theory Guide. Ansys Inc., CanonsburgGoogle Scholar
  23. 23.
    Bathen D, Breitbach M (2001) Adsorptionstechnik [s.l.]. VCH verlagsgesellschaft mbH, HobokenCrossRefGoogle Scholar
  24. 24.
    Loh WH (1968) Jet, rocket, nuclear, ion and electric propulsion. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Liu XP, Jiang Y, Zhang S, Li JX (2015) Melting process of porous-media-filled ice hold-over plate. Chem Eng Prog 43:3636–3643Google Scholar
  26. 26.
    Davis JR (1998) Metals Handbook, desk edition, 2nd edn. ASM International, Ohio, p 148Google Scholar
  27. 27.
    Khalilollahi A (1990) Industrial Heating (USA). In Wang JJ (Eds) Heat Treatment of Metals Abroad vol. 11, pp. 17–19Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Weijie Hu
    • 1
    • 2
    Email author
  • Bin Guo
    • 1
    • 2
  • Wenlong Li
    • 1
    • 2
  • Hongfei Wang
    • 1
  • Haojing Wang
    • 1
  1. 1.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations