Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 316, Issue 3, pp 1059–1065 | Cite as

Analysis of therapeutic effectiveness attained through generation of three alpha particles in proton-boron fusion reaction based on Monte Carlo simulation code

  • Sunmi Kim
  • Do-Kun Yoon
  • Han-Back Shin
  • Moo-Sub Kim
  • Tae Suk Suh
Article
  • 114 Downloads

Abstract

This study analyzed the effectiveness attained through generation of three alpha particles in proton-boron fusion therapy (PBFT) based on a Monte Carlo simulation. PBFT is based on a fusion reaction between protons and boron. Three alpha particles are emitted from this reaction. The three alpha particles cause greater damage to tumor cells than the single alpha particle produced in the boron neutron capture reaction or conventional therapy. In addition, the intrinsic proton dose pattern follows Bragg-peak curve. We confirmed an energy deposition by the alpha particle and verified the therapeutic effect of the PBFT.

Keywords

Alpha particle Proton Boron Proton-boron fusion reaction Monte Carlo simulation 

Notes

Acknowledgements

This study was supported by a grant (No. 2016R1C1B2009258) from the Rising Career Researcher Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning.

References

  1. 1.
    Bortfeld T (1997) An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 24:2024–2033CrossRefGoogle Scholar
  2. 2.
    Moreau DC (1977) Potentiality of the proton-boron fuel for controlled thermonuclear fusion. Nucl Fusion 17:13CrossRefGoogle Scholar
  3. 3.
    Matloob SA, Nasir HA, Choi D (2016) Proton beam therapy in the management of skull base chordomas: systematic review of indications, outcomes, and implications for neurosurgeons. Br J Neurosurg 30:382–387CrossRefGoogle Scholar
  4. 4.
    Flynn RT, Barbee DL, Mackie TR, Jeraj R (2007) Comparison of intensity modulated X-ray therapy and intensity modulated proton therapy for selective subvolume boosting: a phantom study. Phys Med Biol 52:6073–6091CrossRefGoogle Scholar
  5. 5.
    Loeffler JS, Durante M (2013) Charged particle therapy-optimization, challenges and future directions. Nat Rev Clin Oncol 10:411–424CrossRefGoogle Scholar
  6. 6.
    Torabi F, Masoudi SF, Rahmani F, Rasouli FS (2014) BSA optimization and dosimetric assessment for an electron linac based BNCT of deep-seated brain tumors. J Radioanal Nucl Chem 300:1167–1174CrossRefGoogle Scholar
  7. 7.
    Yoon DK, Jung JY, Han SM, Suh TS (2015) Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study. J Radioanal Nucl Chem 303:859–866CrossRefGoogle Scholar
  8. 8.
    Kim S, Yoon DK, Shin HB, Jung JY, Kim MS, Kim KH, Jang HS, Suh TS (2017) A simulation study for radiation treatment planning based on the atomic physics of the proton-boron fusion reaction. J Korean Phys Soc. 70:629–639CrossRefGoogle Scholar
  9. 9.
    Yoon DK, Jung JY, Suh TS (2014) Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study. Appl Phys Lett 105(22):223507CrossRefGoogle Scholar
  10. 10.
    Jung JY, Yoon DK, Barraclough B, Lee HC, Suh TS, Lu B (2017) Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study. Oncotarget. 8:39774–39781Google Scholar
  11. 11.
    Shin HB, Yoon DK, Jung JY, Kim MS, Suh TS (2016) Prompt gamma ray imaging for verification of proton boron fusion therapy: a Monte Carlo study. In: Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)Google Scholar
  12. 12.
    Burigo L, Pshenichnov I, Mishustin I, Hilgers G, Bleicher M (2016) Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit. Phys Med Biol 61:3698–3711CrossRefGoogle Scholar
  13. 13.
    Elbast M, Saudo A, Franck D, Petitot F, Desbree A (2012) Microdosimetry of alpha particles for simple and 3d voxelised geometries using MCNPX and geant4 monte carlo codes. Radiat Prot Dosim 150:342–349CrossRefGoogle Scholar
  14. 14.
    Schneider NR, Glover SE, Dong ZY, Spitz HB (2016) Microdosimetry of alpha-emitting decay products in tissue using conventional film autoradiography. J Radioanal Nucl Chem 307:2029–2033CrossRefGoogle Scholar
  15. 15.
    Vavilov PV (1957) Ionization losses of high-energy heavy particles. J Exp Theoret Phys 5Google Scholar
  16. 16.
    Goudsmit S, Saunderson JL (1940) Multiple scattering of electrons. Phys Rev 57:6CrossRefGoogle Scholar
  17. 17.
    Paganetti H (2006) Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields. Phys Med Biol 51:2801–2812CrossRefGoogle Scholar
  18. 18.
    Jiang H, Paganetti H (2004) Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med Phys 31:2811–2818CrossRefGoogle Scholar
  19. 19.
    Brandao SF, Campos TPR (2012) Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with Cf-252 brachytherapy. Radiat Prot Dosim 149:289–296CrossRefGoogle Scholar
  20. 20.
    Binks W (1951) International recommendations on radiological protection. J Fac Radiol 2:178–179CrossRefGoogle Scholar
  21. 21.
    Paganetti H, Olko P, Kobus H, Becker R, Schmitz T, Waligorski MPR, Filges D, MullerGartner HW (1997) Calculation of relative biological effectiveness for proton beams using biological weighting functions. Int J Radiat Oncol Biol Phys 37:719–729CrossRefGoogle Scholar
  22. 22.
    Wittig A, Michel J, Moss RL, Stecher-Rasmussen F, Arlinghaus HF, Bendel P, Mauri PL, Altieri S, Hilger R, Salvadori PA, Menichetti L, Zamenhof R, Sauerwein WAG (2008) Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT). Crit Rev Oncol/Hematol 68:66–90CrossRefGoogle Scholar
  23. 23.
    Jung J-Y, Yoon D-K, Lee HC, Lu B, Suh TS (2016) The investigation of physical conditions of boron uptake region in proton boron fusion therapy (PBFT). AIP Adv 6:095119CrossRefGoogle Scholar
  24. 24.
    Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59:R419–R472CrossRefGoogle Scholar
  25. 25.
    Kondo N, Sakurai Y, Hirota Y, Tanaka H, Watanabe T, Nakagawa Y, Narabayashi M, Kinashi Y, Miyatake S, Hasegawa M, Suzuki M, Masunaga S, Ohnishi T, Ono K (2016) DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV. Radiat Environ Biophys 55:89–94CrossRefGoogle Scholar
  26. 26.
    Villagrasa C, Dos Santos M, Bianco D, Gruel G, Barquinero JF, Clairand I (2014) RBE-let relationship for proton and alpha irradiations studied with a nanodosimetric approach. Radiat Prot Dosim 161:449–453CrossRefGoogle Scholar
  27. 27.
    Tarkanyi F, Hermanne A, Ditroi F, Takacs S (2017) Activation cross section data of proton induced nuclear reactions on lanthanum in the 34-65 MeV energy range and application for production of medical radionuclides. J Radioanal Nucl Chem 312:691–704CrossRefGoogle Scholar
  28. 28.
    Tarkanyi F, Hermanne A, Ditroi F, Takacs S, Ignatyuk AV (2017) Activation cross-sections of longer lived radioisotopes of proton induced nuclear reactions on terbium up to 65 MeV. Appl Radiat Isot 127:7–15CrossRefGoogle Scholar
  29. 29.
    Sikora MH, Weller HR (2016) A new evaluation of the B-11(p, alpha)alpha alpha reaction rates. J Fusion Energy 35:538–543CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of MedicineThe Catholic University of KoreaSeoulKorea

Personalised recommendations