Skip to main content
Log in

Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amino-functionalized multi-walled carbon nanotubes (MWCNTs) were synthesized by a simple, cost-effective method using 3-aminopropyltriethoxysilane and were evaluated for cesium ion removal in aqueous solution. Experimental results showed that the maximum cesium adsorption capacity of amino-functionalized MWCNTs was 136.3 mg g−1, reaching 95% of the ultimate adsorption capacity within 30 min. The adsorption capacity of amino-functionalized MWCNTs was not significantly affected by the presence of competing ions. The Langmuir isotherm fitted the experimental data well and a thermodynamic study indicated the spontaneous and endothermic nature of cesium adsorption on the amino-functionalized MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Figueiredo BR, Ananias D, Portugal I, Rocha J, Silva CM (2016) A lanthanide silicate for the sensing and removal of cesium ions from aqueous solutions. Chem Eng J 286:679–688

    Article  CAS  Google Scholar 

  2. Yang S, Han C, Wang X, Nagatsua M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52

    Article  CAS  Google Scholar 

  3. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent–Coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  CAS  Google Scholar 

  4. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML (2014) Adsorption removal of cesium from drinking water: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149

    Article  CAS  Google Scholar 

  5. Ma B, Oh S, Shin WS, Choi SJ (2011) Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 276:336–346

    Article  CAS  Google Scholar 

  6. Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  7. Gupta RK, Dubey SS (2005) Removal of cesium ions from aqueous solution by polyaniline: a radiotracer study. J Polym Res 12:31–35

    Article  CAS  Google Scholar 

  8. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium form low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  9. Rayford GA, Robert GD, Ding GC, Philip CV (1994) Use of silicotitanates for removing cesium and strontium from defense waste. Ind Eng Chem Res 33:2702–2705

    Article  Google Scholar 

  10. Xuemei R, Changlun C, Masaaki N, Xiangke W (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  Google Scholar 

  11. Chin CJM, Shih LC, Tsai HJ, Liu TK (2007) Adsorption of o-xylene and p-xylene from water by multi-walled carbon nanotubes. Carbon 45:1254–1260

    Article  CAS  Google Scholar 

  12. Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A (2008) Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem Commun 10:85–89

    Article  CAS  Google Scholar 

  13. Yang K, Wang X, Zhu L, Xing B (2007) Competitive sorption of pyrene, phenanthrene, and naphthalene on multi walled carbon nanotubes. Environ Sci Technol 40:5804–5810

    Article  Google Scholar 

  14. Yang S, Hu J, Chen C, Shao D, Wang X (2011) Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  15. Chen C, Wang X (2011) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  Google Scholar 

  16. Tao Y, Lin Z, Chen XM, Chen X, Huang M, Oyama X (2008) Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sens Actuator B Chem 129:758–763

    Article  CAS  Google Scholar 

  17. Khalili S, Ghoreyshi AA, Jahanshahi M, Pirzadeh K (2013) Enhancement of carbon dioxide capture by amine-functionalized multiwalled carbon nanotube. Clean-Soil Air Water 41:939–948

    CAS  Google Scholar 

  18. Awual MR, Miyazaki Y, Taguchi T, Shiwaku H, Tsuyoshi Y (2016) Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chem Eng J 291:128–137

    Article  CAS  Google Scholar 

  19. Yanli M, Hongwei H, Yongsheng Y (2011) Biosorption of cesium(I) from aqueous solution by a novel exopolymers secreted from Pseudomonas fluorescens C-2: equilibrium and kinetic studies. J Environ Sci 23:1104–1112

    Article  Google Scholar 

  20. Michael AO, Mayeen UK, Ekramul HNM, Yusoff MA (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 5:71658–71683

    Article  Google Scholar 

  21. Hang L, Pingxiao W, Nengwu Z (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244

    Article  Google Scholar 

  22. Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228

    Article  CAS  Google Scholar 

  23. Vuković GD, Marinković AD, Škapin SD, Ristić MD, Aleksić R, Perić-Grujić AA, Uskoković PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865

    Article  Google Scholar 

  24. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical xxidation of multi walled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  25. Wellington MS, Hélio R, Luciana MS, Hállen DRC, André SF, Roberto MP, Cristiano FL, Glaura GS (2012) Surface properties of oxidized and aminated multi-walled carbon nanotubes. J Braz Chem 23:1078–1086

    Article  Google Scholar 

  26. Li YH, Xu C, Wei B, Zhang X, Zheng M, Wu D, Ajayan PM (2002) Self-organized ribbons of aligned carbon nanotubes. Chem Mater 14:483–485

    Article  CAS  Google Scholar 

  27. Salehi E, Madaeni SS, Rajabi L, Vatanpour V, Derakhshan AA, Zinadini S, Ghorabi SH, Monfared HA (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319

    Article  CAS  Google Scholar 

  28. Chakoli AN, He J, Chenga W, Huang Y (2014) Enhanced oxidized regenerated cellulose with functionalized multiwalled carbon nanotubes for hemostasis applications. RSC Adv 4:52372–52378

    Article  CAS  Google Scholar 

  29. Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X (2011) Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. J Hazard Mater 185:463–471

    Article  CAS  Google Scholar 

  30. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem Ing Tec 82:1059–1073

    Article  CAS  Google Scholar 

  31. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37

    Article  CAS  Google Scholar 

  32. Li J, Chen C, Zhang S, Wang X (2014) Surface functional groups and defects on carbon nanotubes affect adsorption–desorption hysteresis of metal cations and oxoanions in water. Environ Sci 1:488–495

    CAS  Google Scholar 

  33. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective radioactive cesium removal in an aqueous solution. Ind Eng Chem Res 55:3852–3860

    Article  CAS  Google Scholar 

  34. Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88

    Article  CAS  Google Scholar 

  35. Weber WJ, Morris JC (1962) Advances in water pollution research: removal of biologically resistant pollutants from waste waters by adsorption. In: Proceedings of the International Conference on Water Pollution Symposium, vol 2. Pergamon Press, Oxford, p 231–266

  36. Rasool K, Lee DS (2015) Characteristic, kinetics and thermodynamics of Congo Red biosorption by activated sulfidogenic sludge from an aqueous solution. Int J Environ Sci Technol 12:571–580

    Article  CAS  Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  38. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  39. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim 12:327–356

    Google Scholar 

  40. Ho YS, Wang CC (2004) Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Proc Biochem 39:761–765

    Article  Google Scholar 

  41. Wang Y, Mu Y, Zhao Q, Yu H (2006) Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Sep Purif Technol 50:1–7

    Article  CAS  Google Scholar 

  42. Vipin AK, Ling S, Fugetsu B (2016) Removal of Cs+ and Sr2+ from water using MWCNT reinforced zeolite-A beads. Microporous Mesoporous Mater 224:84–88

    Article  CAS  Google Scholar 

  43. Vipin AK, Hu B, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258–259:93–101

    Article  Google Scholar 

  44. Yang S, Shao D, Wang X, Hou G, Nagatsu M, Tan X, Ren X, Yu J (2015) Design of chitosan-grafted carbon nanotubes: evaluation of how the –OH functional group affects Cs+ adsorption. Mar Drugs 13:3116–3131

    Article  CAS  Google Scholar 

  45. Yavari R, Huang YD, Ahmadi SJ (2011) Adsorption of cesium(I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287:393–401

    Article  CAS  Google Scholar 

  46. Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52

    Article  CAS  Google Scholar 

  47. Debnath S, Maity A, Pillay K (2014) Magnetic chitosan–GO nanocomposite: synthesis, characterization and batch adsorber design for Cr(VI) removal. J Environ Chem Eng 2:963–973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was also supported by grants (NRF-2016R1A2B4010431) through the Ministry of Education and National Research Foundation (NRF) of Korea. This research was also supported by an NRF grant from the Korean government (NRF-2015M2A7A1000194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Miran, W. & Lee, D.S. Amino-functionalized multi-walled carbon nanotubes for removal of cesium from aqueous solution. J Radioanal Nucl Chem 316, 691–701 (2018). https://doi.org/10.1007/s10967-018-5812-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5812-6

Keywords

Navigation