Skip to main content
Log in

Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chronological records and sedimentation rates of coastal sediment cores from different aquatic environments of NE Mediterranean are reported. 210Pbex and 137Cs vertical profiles determined by means of gamma-ray spectrometry were utilized for the radiometric dating of the sediment cores. Four sound 210Pb-based models were implemented, verified by 137Cs radiochronology and any other available time-mark. The results exhibited high sedimentation rates due to dynamic environmental conditions in comparison with other systems from the same study area, while the applicability of the dating models is discussed. In addition, estimated 137Cs inventories and 210Pbex fluxes are provided as baseline information for sedimentation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M (2007) Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. J Environ Radioact 98:229–250. https://doi.org/10.1016/j.jenvrad.2007.05.001

    Article  Google Scholar 

  2. Avşar U, Hubert-Ferrari A, De Batist M et al (2015) Sedimentary records of past earthquakes in Boraboy Lake during the last ca 600 years (North Anatolian Fault, Turkey). Palaeogeogr Palaeoclimatol Palaeoecol 433:1–9. https://doi.org/10.1016/j.palaeo.2015.04.031

    Article  Google Scholar 

  3. Condomines M, Sigmarsson O, Gauthier PJ (2010) A simple model of 222Rn accumulation leading to 210Pb excesses in volcanic rocks. Earth Planet Sci Lett 293:331–338. https://doi.org/10.1016/j.epsl.2010.02.048

    Article  CAS  Google Scholar 

  4. DeMaster DJ, Brewster DC, McKee BA, Nittrouer CA (1991) Rates of particle scavenging, sediment reworking, and longitudinal ripple formation at the HEBBLE site based on measurements of 234Th and 210Pb. Mar Geol 99:423–444. https://doi.org/10.1016/0025-3227(91)90054-8

    Article  CAS  Google Scholar 

  5. Díaz-Asencio M, Alonso-Hernández CM, Bolanos-Álvarez Y et al (2009) One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar Pollut Bull 59:108–115. https://doi.org/10.1016/j.marpolbul.2009.02.010

    Article  Google Scholar 

  6. Eleftheriou G, Monte L, Brittain JE, Tsabaris C (2015) Modelling and assessment of the impact of radiocesium and radiostrontium contamination in the Thermaikos Gulf, Greece. Sci Total Environ 533:133–143. https://doi.org/10.1016/j.scitotenv.2015.06.101

    Article  CAS  Google Scholar 

  7. Kanai Y (2013) High activity concentrations of 210Pb and 7Be in sediments and their histories. J Environ Radioact 124:44–49. https://doi.org/10.1016/j.jenvrad.2013.03.009

    Article  CAS  Google Scholar 

  8. Ligero RA, Barrera M, Casas-Ruiz M (2005) Levels of 137Cs in muddy sediments on the seabed in the Bay of Cádiz (Spain). Part II. Model of vertical migration of 137Cs. J Environ Radioact 80:87–103. https://doi.org/10.1016/j.jenvrad.2004.06.006

    Article  CAS  Google Scholar 

  9. Mulsow S, Piovano E, Cordoba F (2009) Recent aquatic ecosystem response to environmental events revealed from 210Pb sediment profiles. Mar Pollut Bull 59:175–181. https://doi.org/10.1016/j.marpolbul.2009.05.018

    Article  CAS  Google Scholar 

  10. Ram A, Borole DV, Rokade MA, Zingde MD (2009) Diagenesis and bioavailability of mercury in the contaminated sediments of Ulhas Estuary, India. Mar Pollut Bull 58:1685–1693. https://doi.org/10.1016/j.marpolbul.2009.06.021

    Article  CAS  Google Scholar 

  11. Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93. https://doi.org/10.1177/0959683607085598

    Article  Google Scholar 

  12. Zapata F (2012) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  13. Radakovitch O, Charmasson S, Arnaud M, Bouisset P (1999) 210Pb and caesium accumulation in the rhône delta sediments. Estuar Coast Shelf Sci 48:77–92. https://doi.org/10.1006/ecss.1998.0405

    Article  CAS  Google Scholar 

  14. Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414. https://doi.org/10.1016/0012-821X(71)90202-0

    Article  CAS  Google Scholar 

  15. Goldberg ED (1963) Geochronology with 210Pb. In: International Atomic Energy Agency & Joint Commission on Applied Radioactivity (eds) Proceedings of the Symposium on Radioactive Dating held by the International Atomic Energy Agency Proceedings of the Symposium on Radioactive Dating. International Atomic Energy Agency, pp 121–131

  16. Mabit L, Benmansour M, Abril JM et al (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth Sci Rev 138:335–351. https://doi.org/10.1016/j.earscirev.2014.06.007

    Article  CAS  Google Scholar 

  17. Abril Hernández JM (2016) A (210)Pb-based chronological model for recent sediments with random entries of mass and activities: model development. J Environ Radioact 151:64–74. https://doi.org/10.1016/j.jenvrad.2015.09.018

    Article  Google Scholar 

  18. International Atomic Energy Agency (IAEA) (1998) Use of 137 Cs in the study of soil erosion and sedimentation. IAEA-TECDOC-1028. International Atomic Energy Agency, Vienna

  19. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982) Ionising radiation: sources and biological effects. Report to the General Assembly with Scientific Annexes, New York

    Google Scholar 

  20. Abril JM (2004) Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ Pollut 129:31–37. https://doi.org/10.1016/j.envpol.2003.10.004

    Article  CAS  Google Scholar 

  21. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807. https://doi.org/10.1016/j.jenvrad.2008.08.009

    Article  CAS  Google Scholar 

  22. Kirchner G (2011) 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J Environ Radioact 102:490–494. https://doi.org/10.1016/j.jenvrad.2010.11.010

    Article  CAS  Google Scholar 

  23. Davies SJ, Metcalfe SE, MacKenzie AB et al (2004) Environmental changes in the Zirahuén Basin, Michoacán, Mexico, during the last 1000 years. J Paleolimnol 31:77–98. https://doi.org/10.1023/B:JOPL.0000013284.21726.3d

    Article  Google Scholar 

  24. MacKenzie AB, Hardie SML, Farmer JG et al (2011) Analytical and sampling constraints in 210Pb dating. Sci Total Environ 409:1298–1304. https://doi.org/10.1016/j.scitotenv.2010.11.040

    Article  CAS  Google Scholar 

  25. Lima AL, Hubeny JB, Reddy CM et al (2005) High-resolution historical records from Pettaquamscutt River basin sediments: 1. 210Pb and varve chronologies validate record of 137Cs released by the Chernobyl accident. Geochim Cosmochim Acta 69:1803–1812. https://doi.org/10.1016/j.gca.2004.10.009

    Article  CAS  Google Scholar 

  26. Boer W, van den Bergh GD, de Haas H et al (2006) Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210Pb models, using the 1883 Krakatau tephra as time marker. Mar Geol 227:263–277. https://doi.org/10.1016/j.margeo.2005.12.002

    Article  Google Scholar 

  27. Du P, Walling DE (2012) Using 210Pb measurements to estimate sedimentation rates on river floodplains. J Environ Radioact 103:59–75. https://doi.org/10.1016/j.jenvrad.2011.08.006

    Article  CAS  Google Scholar 

  28. Tylmann W, Enters D, Kinder M et al (2013) Multiple dating of varved sediments from Lake Łazduny, northern Poland: toward an improved chronology for the last 150 years. Quat Geochronol 15:98–107. https://doi.org/10.1016/j.quageo.2012.10.001

    Article  Google Scholar 

  29. Aba A, Uddin S, Bahbahani M, Al-Ghadban A (2014) Radiometric dating of sediment records in Kuwait’s marine area. J Radioanal Nucl Chem 301:247–255. https://doi.org/10.1007/s10967-014-3140-z

    Article  CAS  Google Scholar 

  30. Zaborska A, Winogradow A, Pempkowiak J (2014) Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. J Environ Radioact 127:11–25. https://doi.org/10.1016/j.jenvrad.2013.09.003

    Article  CAS  Google Scholar 

  31. Putyrskaya V, Klemt E, Röllin S et al (2015) Dating of sediments from four Swiss prealpine lakes with 210Pb determined by gamma-spectrometry: progress and problems. J Environ Radioact 145:78–94. https://doi.org/10.1016/j.jenvrad.2015.03.028

    Article  CAS  Google Scholar 

  32. Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with 210Pb. Earth Planet Sci Lett 14:442–446. https://doi.org/10.1016/0012-821X(72)90146-X

    Article  CAS  Google Scholar 

  33. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

    Article  CAS  Google Scholar 

  34. Sanchez-Cabeza JA, Ani-Ragolta I, Masquè P (2000) Some considerations of the 210 Pb constant rate of supply (CRS) dating model. Limnol Oceanogr 45:990–995. https://doi.org/10.4319/lo.2000.45.4.0990

    Article  CAS  Google Scholar 

  35. Ruiz-Fernández AC, Hillaire-Marcel C (2009) 210Pb-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: potential and limitations. Mar Pollut Bull 59:134–145. https://doi.org/10.1016/j.marpolbul.2009.05.006

    Article  Google Scholar 

  36. Velaoras D, Lascaratos A (2005) Deep water mass characteristics and interannual variability in the North and Central Aegean Sea. J Mar Syst 53:59–85. https://doi.org/10.1016/j.jmarsys.2004.05.027

    Article  Google Scholar 

  37. Jackson J, McKenzie D (1988) Rates of active deformation in the Aegean Sea and surrounding regions. Basin Res 1:121–128. https://doi.org/10.1111/j.1365-2117.1988.tb00009.x

    Article  Google Scholar 

  38. Lykousis V (2009) Sea-level changes and shelf break prograding sequences during the last 400 ka in the Aegean margins: subsidence rates and palaeogeographic implications. Cont Shelf Res 29:2037–2044. https://doi.org/10.1016/j.csr.2008.11.005

    Article  Google Scholar 

  39. Poulos SE (2009) Origin and distribution of the terrigenous component of the unconsolidated surface sediment of the Aegean floor: a synthesis. Cont Shelf Res 29:2045–2060. https://doi.org/10.1016/j.csr.2008.11.010

    Article  Google Scholar 

  40. Nikitin AI, Medinets VI, Chumichev VB et al (1989) Radioactive contamination of the Black Sea as of October 1986 resulting from the accident at the Chernobyl atomic power station. Sov At Energy 65:684–687

    Article  Google Scholar 

  41. Kritidis P, Florou H, Papanicolaou E (1990) Delayed and late impact of the chernobyl accident on the greek environment. Radiat Prot Dosimetry 30:187

    CAS  Google Scholar 

  42. Livingston HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean Coast Manag 43:689–712. https://doi.org/10.1016/S0964-5691(00)00054-5

    Article  Google Scholar 

  43. Egorov VN, Povinec PP, Polikarpov GG et al (1999) 90Sr and 137Cs in the Black Sea after the Chernobyl NPP accident: inventories, balance and tracer applications. J Environ Radioact 43:137–155. https://doi.org/10.1016/S0265-931X(98)00088-5

    Article  CAS  Google Scholar 

  44. Delfanti R, Özsoy E, Kaberi H et al (2014) Evolution and fluxes of 137Cs in the black sea/turkish straits system/north aegean sea. J Mar Syst 135:117–123. https://doi.org/10.1016/j.jmarsys.2013.01.006

    Article  Google Scholar 

  45. Eleftheriou G, Tsabaris C, Kapsimalis V, et al (2014) Radionuclides and heavy metals concentrations at the seabed of NW Piraeus, Greece. In: Proceedings of the 22th Symposium of the Hellenic Nuclear Physics Society, 30 May–1 June 2013, Athens. Adv Nucl Phys 23, pp 156–159

  46. Papageorgiou D, Eleftheriou G, Patiris DL, et al (2012) Recent sedimentation rates using 210Pb and 137Cs vertical profiles of core sediments at the gulf of Corinth, Litochoro coast and Marmara Sea. In: Proceedings of the 20th Symposium of Hellenic Nuclear Physics Society, 27–28 May 2011, Athens. Adv Nucl Phys 21, pp 92–99

  47. Kourafalou VH, Savvidis YG, Krestenitis YN, Koutitas CG (2004) Modelling studies on the processes that influence matter transfer on the Gulf of Thermaikos (NW Aegean Sea). Cont Shelf Res 24:203–222. https://doi.org/10.1016/j.csr.2003.10.009

    Article  Google Scholar 

  48. Poulos SE, Collins MB, Pattiaratchi C et al (1996) Oceanography and sedimentation in the semi-enclosed, deep-water Gulf of Corinth (Greece). Mar Geol 134:213–235. https://doi.org/10.1016/0025-3227(96)00028-X

    Article  CAS  Google Scholar 

  49. International Atomic Energy Agency (IAEA) (2003) Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. IAEA-TECDOC-1360. International Atomic Energy Agency, Vienna

  50. Tsabaris C, Kapsimalis V, Eleftheriou G et al (2012) Determination of 137Cs activities in surface sediments and derived sediment accumulation rates in Thessaloniki Gulf, Greece. Environ Earth Sci 67:833–843. https://doi.org/10.1007/s12665-012-1530-5

    Article  CAS  Google Scholar 

  51. Keyser RM, Twomey TR (2007) Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity. J Radioanal Nucl Chem 271:55–61

    Article  CAS  Google Scholar 

  52. Eleftheriou G, Tsabaris C, Androulakaki EG et al (2013) Radioactivity measurements in the aquatic environment using in situ and laboratory gamma-ray spectrometry. Appl Radiat Isot 82:268–278. https://doi.org/10.1016/j.apradiso.2013.08.007

    Article  CAS  Google Scholar 

  53. Tsabaris C, Eleftheriou G, Kapsimalis V et al (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl Radiat Isot 65:445–453. https://doi.org/10.1016/j.apradiso.2006.11.006

    Article  CAS  Google Scholar 

  54. International Atomic Energy Agency (IAEA) (2005) Marine Environmental Assessment of the Mediterranean Sea (2005–2010): Methodological guidelines. IAEA-TC-RER/7/003. International Atomic Energy Agency, Vienna

  55. Geraldo LP, Smith DL (1990) Covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Nucl Inst Methods Phys Res A 290:499–508. https://doi.org/10.1016/0168-9002(90)90569-R

    Article  Google Scholar 

  56. Kalfas CA, Axiotis M, Tsabaris C (2016) SPECTRW: a software package for nuclear and atomic spectroscopy. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 830:265–274. https://doi.org/10.1016/j.nima.2016.05.098

    Article  CAS  Google Scholar 

  57. Vidmar T (2005) EFFTRAN - A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 550:603–608. https://doi.org/10.1016/j.nima.2005.05.055

    Article  CAS  Google Scholar 

  58. Vidmar T, Kanisch G, Vidmar G (2011) Calculation of true coincidence summing corrections for extended sources with EFFTRAN. Appl Radiat Isot 69:908–911. https://doi.org/10.1016/j.apradiso.2011.02.042

    Article  CAS  Google Scholar 

  59. Tellinghuisen J (2001) Statistical Error Propagation. J Phys Chem A 105:3917–3921. https://doi.org/10.1021/jp003484u

    Article  CAS  Google Scholar 

  60. Dovlete C, Povinec PP (2004) Quantification of uncertainty in gamma-spectrometric analysis of environmental samples. In: Quantifying uncertainty in nuclear analytical measurements. IAEA-TECDOC-1401. International Atomic Energy Agency, Vienna, pp 103–126

  61. Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200. https://doi.org/10.1016/j.gca.2010.12.024

    Article  CAS  Google Scholar 

  62. Gale SJ, Haworth RJ, Pisanu PC (1995) The 210Pb chronology of late holocene deposition in an Eastern Australian Lake basin. Quat Sci Rev 14:395–408. https://doi.org/10.1016/0277-3791(95)00033-X

    Article  Google Scholar 

  63. Ritchie JC, McHenry JR (1990) Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233. https://doi.org/10.2134/jeq1990.00472425001900020006x

    Article  CAS  Google Scholar 

  64. Lu X (2007) A note on removal of the compaction effect for the 210Pb method. Appl Radiat Isot 65:142–146. https://doi.org/10.1016/j.apradiso.2006.05.010

    Article  CAS  Google Scholar 

  65. Abril JM, Gharbi F (2012) Radiometric dating of recent sediments: beyond the boundary conditions. J Paleolimnol 48:449–460. https://doi.org/10.1007/s10933-012-9622-5

    Article  Google Scholar 

  66. Holby O, Evans S (1996) The vertical distribution of Chernobyl-derived radionuclides in a Baltic Sea sediment. J Environ Radioact 33:129–145. https://doi.org/10.1016/0265-931X(95)00089-S

    Article  CAS  Google Scholar 

  67. Kramer KJM, Misdorp R, Berger G, Duijts R (1991) Maximum pollutant concentrations at the wrong depth: a misleading pollution history in a sediment core. Mar Chem 36:183–198. https://doi.org/10.1016/S0304-4203(09)90061-5

    Article  CAS  Google Scholar 

  68. Petersen W, Knauth HD, Pepelnik R, Bendler I (1990) Vertical distribution of chernobyl isotopes and their correlation with heavy metals and organic carbon in sediment cores of the elbe estuary. Sci Total Environ 97–98:531–547. https://doi.org/10.1016/0048-9697(90)90262-S

    Article  Google Scholar 

  69. Iliakis S (2011) Identification of elements in marine sediments with spectrometric methods for determining the degree of pollution in correlation with the sedimentary rate of marine area. Master Thesis (in Greek). National Technical University of Athens, Athens

  70. Cundy AB, Kortekaas S, Dewez T et al (2000) Coastal wetlands as recorders of earthquake subsidence in the Aegean: a case study of the 1894 Gulf of Atalanti earthquakes, central Greece. Mar Geol 170:3–26. https://doi.org/10.1016/S0025-3227(00)00062-1

    Article  Google Scholar 

  71. Cundy AB, Stewart IS (2004) Dating recent colluvial sequences with 210 and 137Cs along an active fault scarp, the Eliki Fault, Gulf of Corinth, Greece. Tectonophysics 386:147–156. https://doi.org/10.1016/j.tecto.2004.06.002

    Article  CAS  Google Scholar 

  72. Karageorgis AP, Kaberi H, Price NB et al (2005) Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): sediment accumulation rates, trawling and winnowing effects. Cont Shelf Res 25:2456–2475. https://doi.org/10.1016/j.csr.2005.08.006

    Article  Google Scholar 

  73. Simopoulos SE (1989) Soil sampling and 137Cs analysis of the chernobyl fallout in Greece. Int J Radiat Appl Instrumentation Part 40:607–613. https://doi.org/10.1016/0883-2889(89)90116-0

    Article  CAS  Google Scholar 

  74. Florou H, Kritidis P (1994) The Dispersion of 137Cs in the Aegean Sea. Radiochim Acta 66–67:415–417. https://doi.org/10.1524/ract.1994.6667.special-issue.415

    Google Scholar 

  75. Tsabaris C, Patiris DL, Fillis-Tsirakis E et al (2015) Vertical distribution of 137Cs activity concentration in marine sediments at Amvrakikos Gulf, western of Greece. J Environ Radioact 144:1–8. https://doi.org/10.1016/j.jenvrad.2015.02.009

    Article  CAS  Google Scholar 

  76. Nicolaidou M, Hadjichristou E (1995) Recording and assessment of flood damages in Greece and Cyprus. Diploma thesis (in Greek). National Technical Univercity of Athens, Athens

  77. Lykousis V, Chronis G (1989) Mechanisms of sediment transport and deposition: sediment sequences and accumulation during the Holocene on the Thermaikos plateau, the continental slope, and basin (Sporadhes basin), northwestern Aegean Sea, Greece. Mar Geol 87:15–26. https://doi.org/10.1016/0025-3227(89)90142-4

    Article  Google Scholar 

  78. Paphitis D, Collins MB (2005) Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont Shelf Res 25:2350–2365. https://doi.org/10.1016/j.csr.2005.08.028

    Article  Google Scholar 

  79. Lykousis V, Sakellariou D, Moretti I, Kaberi H (2007) Late Quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics 440:29–51. https://doi.org/10.1016/j.tecto.2006.11.007

    Article  Google Scholar 

  80. Console R, Carluccio R, Papadimitriou E, Karakostas V (2015) Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system. J Geophys Res Solid Earth 120:326–343. https://doi.org/10.1002/2014JB011765

    Article  Google Scholar 

  81. Hubert A, King G, Armijo R et al (1996) Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence. Earth Planet Sci Lett 142:573–585. https://doi.org/10.1016/0012-821X(96)00108-2

    Article  CAS  Google Scholar 

  82. Tsabaris C, Evangeliou N, Fillis-Tsirakis E et al (2012) Distribution of natural radioactivity in sediment cores from Amvrakikos Gulf (western Greece) as a part of iaea’s campaign in the Adriatic and Ionian seas. Radiat Prot Dosimetry 150:474–487. https://doi.org/10.1093/rpd/ncr436

    Article  CAS  Google Scholar 

  83. Kapsimalis V, Pavlakis P, Poulos SE et al (2005) Internal structure and evolution of the late quaternary sequence in a shallow embayment: the Amvrakikos Gulf. NW Greece. Mar Geol. 222:399–418

    Article  Google Scholar 

  84. Voutsinou-Taliadouri F, Balopoulos ET (1991) Geochemical and physical oceanographic aspects of the amvrakikos Gulf (Ionian Sea, Greece). Toxicol Environ Chem 31:177–185. https://doi.org/10.1080/02772249109357687

    Article  Google Scholar 

  85. Poulos S, Chronis G (1997) The importance of the Greek river systems in the evolution of the Greek coastline. In: Briand F, Maldonado A (eds) Transformations and Evolution of the Mediterranean Coastline. Bulletin de I’ Institut Oceanographique Special Publication 18. CIESM Science Series 3. pp 75–96

  86. Ferentinos G, Papatheodorou G, Geraga M et al (2010) Fjord water circulation patterns and dysoxic/anoxic conditions in a Mediterranean semi-enclosed embayment in the Amvrakikos Gulf, Greece. Estuar Coast Shelf Sci 88:473–481. https://doi.org/10.1016/j.ecss.2010.05.006

    Article  CAS  Google Scholar 

  87. Jing Z, Rapp GR (2003) The coastal evolution of the Ambracian embayment and its relationship to archaeological setting. Hesperia Suppl 32:157–198

    Article  Google Scholar 

  88. Tziavos C (1997) Palaeogeographic evolution of the Amvrakikos Gulf, Western Greece. In: Marinos PG, Koukis GC, Tsiambaos GC, Stoumaras GC (eds) Engineering geology and the environment, vol 1. Balkerna, Rotterdam, pp 425–430

    Google Scholar 

  89. Kazanci N, Leroy S, Ileri Ö et al (2004) Late Holocene erosion in NW Anatolia from sediments of lake Manyas, Lake Ulubat and the southern shelf of the Marmara Sea, Turkey. CATENA 57:277–308. https://doi.org/10.1016/j.catena.2003.11.004

    Article  Google Scholar 

  90. Bulut E, Aksoy A (2008) Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination 226:289–297. https://doi.org/10.1016/j.desal.2007.02.112

    Article  CAS  Google Scholar 

  91. Yenilmez F, Aksoy A (2013) Comparison of phosphorus reduction alternatives in control of nutrient concentrations in Lake Uluabat (Bursa, Turkey): partial versus full sediment dredging. Limnologica 43:1–9. https://doi.org/10.1016/j.limno.2012.05.003

    Article  CAS  Google Scholar 

  92. Perissoratis C, Conispoliatis N (2003) The impacts of sea-level changes during latest Pleistocene and Holocene times on the morphology of the Ionian and Aegean seas (SE Alpine Europe). Mar Geol 196:145–156. https://doi.org/10.1016/S0025-3227(03)00047-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the crews of the research vessels that took part in the field work during the campaigns, Dr V. Lykousis as HCMR coordinator of the NoE ESONET EU project, as well as the collogues from the Environmental Radioactivity Laboratory of HCMR and the Nuclear Physics Group of National Technical University of Athens for their assistant and support of this work. The authors would like also to thank Dr N. Cagatay from Istanbul Technical University for providing the sediment samples from the Uluabat Lake and researcher Dr C.A. Kalfas for providing the gamma-spectrometry software package SPECTRW. Dr. E.G. Androulakaki would like to acknowledge State Scholarships Foundation (IKY), as part of this research is implemented through IKY scholarships programme and co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the action entitled “Reinforcement of Postdoctoral Researchers”, in the framework of the Operational Programme”Human Resources Development Program, Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) 2014 – 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Eleftheriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleftheriou, G., Tsabaris, C., Papageorgiou, D.K. et al. Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean. J Radioanal Nucl Chem 316, 655–671 (2018). https://doi.org/10.1007/s10967-018-5802-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5802-8

Keywords

Navigation