Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 316, Issue 3, pp 1011–1019 | Cite as

Sensitive and selective fluorescence detection of aqueous uranyl ions using water-soluble CdTe quantum dots

  • Xinfeng Chen
  • Kui Zhang
  • Huan Yu
  • Long Yu
  • Hongwei Ge
  • Ji Yue
  • Tianxin Hou
  • Abdullah M. Asiri
  • Hadi M. Marwani
  • Suhua Wang
Article

Abstract

Herein we report a fluorescent method for sensitive and selective detection of uranyl ions using CdTe quantum dots functionalized with mercaptopropionic acid, which the fluorescence of the quantum dots could be quantitatively quenched through electron transfer mechanism. The detection limit of the method was estimated to be 4 nM, less than the maximum allowed content of 130 nM for uranyl in drinking water defined by the U.S. Environmental Protection Agency. Furthermore, the probe was successfully applied in detection of uranyl ions in real samples, demonstrating its potential practical applications for monitoring of uranyl ions in environment.

Keywords

Cadmium telluride quantum dots Uranyl ions Fluorescence quenching Electron transfer mechanism Masking agent 

Notes

Acknowledgements

The study was financially supported from the National Key Research and Development Program of China (2017YFA0207003), the National Natural Science Foundation of China (21475134, 91439101, and 21775042) and the Fundamental Research Funds for the Central Universities (2016ZZD06).

Supplementary material

10967_2018_5799_MOESM1_ESM.docx (119 kb)
Supplementary material 1 (DOCX 118 kb)

References

  1. 1.
    Wen J, Huang Z, Hu S, Li S, Li W, Wang X (2016) Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection. J Hazard Mater 318:363–370CrossRefGoogle Scholar
  2. 2.
    Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L, Hasic A, Kozaric M, Hukic M, Marjanovic D (2017) Chemical toxicity and radioactivity of depleted uranium: the evidence from in vivo and in vitro studies. Environ Res 156:665–673CrossRefGoogle Scholar
  3. 3.
    Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S (2017) Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ Sci Technol 51(7):3911–3921CrossRefGoogle Scholar
  4. 4.
    Maynadié J, Berthet J-C, Thuéry P, Ephritikhine M (2006) From bent to linear uranium metallocenes: influence of counterion, solvent, and metal ion oxidation state. Organometallics 25(23):5603–5611CrossRefGoogle Scholar
  5. 5.
    Bryant PA (2014) Chemical toxicity and radiological health detriment associated with the inhalation of various enrichments of uranium. J Radiol Prot 34(1):N1CrossRefGoogle Scholar
  6. 6.
    Fukuda S (2005) Chelating agents used for plutonium and uranium removal in radiation emergency medicine. Curr Med Chem 12(23):2765–2770CrossRefGoogle Scholar
  7. 7.
    Wu X, Liu Y, Hu S, Chu T (2015) Extraction of uranyl ion into ionic liquid by N,N,N′,N′-tetrabutylsuccinamide and spectroscopic study of uranyl complex. J Radioanal Nucl Chem 307(1):161–167CrossRefGoogle Scholar
  8. 8.
    Wang S, Jiang J, Wu H, Jia J, Shao L, Tang H, Ren Y, Chu M, Wang X (2017) Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions. Spectrochim Acta A 180:23–28CrossRefGoogle Scholar
  9. 9.
    Hu B, Ye F, Ren X, Zhao D, Sheng G, Li H, Ma J, Wang X, Huang Y (2016) X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated with zero-valent iron nanoparticles. Environ Sci 3(6):1460–1472Google Scholar
  10. 10.
    Rout S, Ravi PM, Kumar A, Tripathi RM (2017) Spectroscopic investigation of uranium sorption on soil surface using X-ray photoelectron spectroscopy. J Radioanal Nucl Chem 313(3):565–570CrossRefGoogle Scholar
  11. 11.
    Abbasi SA (1989) Atomic absorption spectrometric and spectrophotometric trace analysis of uranium in environmental samples with N-p-methoxyphenyl-2-furylacrylohydroxamic acid and 4-(2-pyridylazo) resorcinol. Int J Environ Anal Chem 36(3):163–172CrossRefGoogle Scholar
  12. 12.
    Chandrasekaran K, Karunasagar D, Arunachalam J (2011) Dispersive liquid-liquid micro extraction of uranium(VI) from groundwater and seawater samples and determination by inductively coupled plasma-optical emission spectrometry and flow injection-inductively coupled plasma mass spectrometry. Anal Methods 3(9):2140–2147CrossRefGoogle Scholar
  13. 13.
    Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal Chem 64(13):1413–1418CrossRefGoogle Scholar
  14. 14.
    Martínez-Torrents A, Meca S, Baumann N, Martí V, Giménez J, de Pablo J, Casas I (2013) Uranium speciation studies at alkaline pH and in the presence of hydrogen peroxide using time-resolved laser-induced fluorescence spectroscopy. Polyhedron 55:92–101CrossRefGoogle Scholar
  15. 15.
    Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130(43):14217–14226CrossRefGoogle Scholar
  16. 16.
    Peled Y, Krent E, Tal N, Tobias H, Mandler D (2015) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87(1):768–776CrossRefGoogle Scholar
  17. 17.
    Zhu J-H, Zhao X, Yang J, Tan Y-T, Zhang L, Liu S-P, Liu Z-F, Hu X-L (2016) Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin. Spectrochim Acta A 159:146–150CrossRefGoogle Scholar
  18. 18.
    Shamsipur M, Mohammadi M, Taherpour A, Garau A, Lippolis V (2015) Highly selective and sensitive fluorescence optode membrane for uranyl ion based on 5-(9-anthracenylmethyl)-5-aza-2,8-dithia[9], (2,9)-1,10-phenanthrolinophane. RSC Adv 5(112):92061–92070CrossRefGoogle Scholar
  19. 19.
    Ma J, He W, Han X, Hua D (2017) Amidoximated fluorescent polymer based sensor for detection of trace uranyl ion in aqueous solution. Talanta 168:10–15CrossRefGoogle Scholar
  20. 20.
    Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135(14):5254–5257CrossRefGoogle Scholar
  21. 21.
    Yan Y, Sun J, Zhang K, Zhu H, Yu H, Sun M, Huang D, Wang S (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87(4):2087–2093CrossRefGoogle Scholar
  22. 22.
    Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427CrossRefGoogle Scholar
  23. 23.
    Hua J, Yang J, Zhu Y, Zhao C, Yang Y (2017) Highly fluorescent carbon quantum dots as nanoprobes for sensitive and selective determination of mercury(II) in surface waters. Spectrochim Acta A 187:149–155CrossRefGoogle Scholar
  24. 24.
    Dutta RK, Kumar A (2016) Highly sensitive and selective method for detecting ultratrace levels of aqueous uranyl ions by strongly photoluminescent-responsive amine-modified cadmium sulfide quantum dots. Anal Chem 88(18):9071–9078CrossRefGoogle Scholar
  25. 25.
    Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z (2010) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem 82(22):9579–9586CrossRefGoogle Scholar
  26. 26.
    Liu X, Jiang H, Lei J, Ju H (2007) Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem 79(21):8055–8060CrossRefGoogle Scholar
  27. 27.
    Zhu H, Yu T, Xu H, Zhang K, Jiang H, Zhang Z, Wang Z, Wang S (2014) Fluorescent nanohybrid of gold nanoclusters and quantum dots for visual determination of lead ions. ACS Appl Mater Interfaces 6(23):21461–21467CrossRefGoogle Scholar
  28. 28.
    Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85(13):6461–6468CrossRefGoogle Scholar
  29. 29.
    Liu J, Yang S, Li F, Dong L, Liu J, Wang X, Pu Q (2015) Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil. J Mater Chem A 3(18):10069–10076CrossRefGoogle Scholar
  30. 30.
    Xu H, Zhu H, Sun M, Yu H, Li H, Ma F, Wang S (2015) Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions. Analyst 140(5):1678–168529CrossRefGoogle Scholar
  31. 31.
    Zavodska LKE, Scerbakova L, Lesny J (2008) Environmental chemistry of uranium. HV ISSN 1418-7108: HEJ Manuscript No: ENV-081221-A, pp 1–18Google Scholar
  32. 32.
    Hu B, Huang C, Li X, Sheng G, Li H, Ren X, Ma J, Wang J, Huang Y (2017) Macroscopic and spectroscopic insights into the mutual interaction of graphene oxide, Cu(II), and Mg/Al layered double hydroxides. Chem Eng J 313:527–534CrossRefGoogle Scholar
  33. 33.
    Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76(9):1517–152032CrossRefGoogle Scholar
  34. 34.
    Wargnier R, Baranov AV, Maslov VG, Stsiapura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot—nanogold assemblies. Nano Lett 4(3):451–457CrossRefGoogle Scholar
  35. 35.
    Leinders G, Bes R, Pakarinen J, Kvashnina K, Verwerft M (2017) Evolution of the uranium chemical state in mixed-valence oxides. Inorg Chem 56(12):6784–6787CrossRefGoogle Scholar
  36. 36.
    Hu B, Hu Q, Xu D, Chen C (2017) The adsorption of U(VI) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques. Sep Purif Technol 175:140–146CrossRefGoogle Scholar
  37. 37.
    Hu B, Chen G, Jin C, Hu J, Huang C, Sheng J, Sheng G, Ma J, Huang Y (2017) Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron. J Hazard Mater 336:214–221CrossRefGoogle Scholar
  38. 38.
    Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19(3):376–380CrossRefGoogle Scholar
  39. 39.
    Fu Q, Zhou X, Xu L, Hu B (2015) Fulvic acid decorated Fe3O4 magnetic nanocomposites for the highly efficient sequestration of Ni(II) from an aqueous solution. J Mol Liq 208:92–98CrossRefGoogle Scholar
  40. 40.
    Hu B, Hu Q, Chen C, Sun Y, Xu D, Sheng G (2017) New insights into Th(IV) speciation on sepiolite: evidence for EXAFS and modeling investigation. Chem Eng J 322:66–72CrossRefGoogle Scholar
  41. 41.
    Hu B, Hu Q, Xu D, Chen C (2017) Macroscopic and microscopic investigation on adsorption of Sr(II) on sericite. J Mol Liq 225:563–568CrossRefGoogle Scholar
  42. 42.
    Zhou D, Piper JD, Abell C, Klenerman D, Kang D-J, Ying L (2005) Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem Commun 38:4807–4809CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Environment and Chemical EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina
  3. 3.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations