A simple correction method for isobaric interferences induced by lead during uranium isotope analysis using secondary ion mass spectrometry

  • Jinkyu Park
  • Tae Hee Kim
  • Chi-Gyu Lee
  • Sang Ho Lim
  • Sun Ho Han
Article
  • 28 Downloads

Abstract

Isobaric interference is a major limitation of secondary ion mass spectrometry. We developed a simple correction method for polyatomic mass interferences from lead in isotope ratio measurements of uranium. Lead-generated isobars were measured to determine their formation rates relative to lead isotopes. The rates were used to mathematically subtract the isobar contributions from the signal intensities in the uranium mass range. The correction method was successfully verified using mixed uranium-lead samples (oxide powder and solution-dried residue).

Keywords

Secondary ion mass spectrometry Uranium isotope analysis Lead-induced isobaric interference 

Notes

Acknowledgements

We thank Ms. Ranhee Park for assistance with the TIMS measurements of the DU material used in this study. This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KOFONS), granted financial resource from the Nuclear Safety and Security Commission (NSSC), Republic of Korea (1405020).

Supplementary material

10967_2018_5798_MOESM1_ESM.docx (490 kb)
Supplementary material 1 (DOCX 490 kb)

References

  1. 1.
    Mayer K, Wallenius M, Ray I (2005) Nuclear forensics-a methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130(4):433–441CrossRefGoogle Scholar
  2. 2.
    Tandon L, Hastings E, Banar J, Barnes J, Beddingfield D, Decker D, Dyke J, Farr D, FitzPatrick J, Gallimore D, Garner S, Gritzo R, Hahn T, Havrilla G, Johnson B, Kuhn K, LaMont S, Langner D, Lewis C, Majidi V, Martinez P, McCabe R, Mecklenburg S, Mercer D, Meyers S, Montoya V, Patterson B, Pereyra RA, Porterfield D, Poths J, Rademacher D, Ruggiero C, Schwartz D, Scott M, Spencer K, Steiner R, Villarreal R, Volz H, Walker L, Wong A, Worley C (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioanal Nucl Chem 276(2):467–473CrossRefGoogle Scholar
  3. 3.
    Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900CrossRefGoogle Scholar
  4. 4.
    Boulyga S, Konegger-Kappel S, Richter S, Sangely L (2015) Mass spectrometric analysis for nuclear safeguards. J Anal At Spectrom 30(7):1469–1489CrossRefGoogle Scholar
  5. 5.
    Esaka F, Esaka KT, Lee CG, Magara M, Sakurai S, Usuda S, Watanabe K (2007) Particle isolation for analysis of uranium minor isotopes in individual particles by secondary ion mass spectrometry. Talanta 71(3):1011–1015CrossRefGoogle Scholar
  6. 6.
    Konomi TE, Fumitaka E, Jun I, Kazunari I, Chi-Gyu L, Satoshi S, Kazuo W, Shigekazu U (2004) Application of fission track technique for the analysis of individual particles containing uranium in safeguard swipe samples. Jpn J Appl Phys 43(7A):L915CrossRefGoogle Scholar
  7. 7.
    Peres P, Hedberg PML, Walton S, Montgomery N, Cliff JB, Rabemananjara F, Schuhmacher M (2013) Nuclear safeguards applications using LG-SIMS with automated screening capabilities. Surf Interface Anal 45(1):561–565CrossRefGoogle Scholar
  8. 8.
    Ranebo Y, Hedberg PML, Whitehouse MJ, Ingeneri K, Littmann S (2009) Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. J Anal At Spectrom 24(3):277–287CrossRefGoogle Scholar
  9. 9.
    Esaka F, Suzuki D, Yomogida T, Magara M (2016) Application of automated particle screening for effective analysis of individual uranium particles by thermal ionization mass spectrometry. Anal Methods 8(7):1543–1548CrossRefGoogle Scholar
  10. 10.
    Park J, Kim TH, Lee C-G, Lee J, Lim SH, Han SH, Song K (2017) Combinatory use of time-of-flight secondary ion mass spectrometry (SIMS) and sector-field SIMS for estimating elemental and isotopic compositions of nuclear forensic samples. J Radioanal Nucl Chem 311(2):1535–1544CrossRefGoogle Scholar
  11. 11.
    Lide DR (ed) (2005) Abundance of elements in the earth’s crust and in the sea. In: CRC handbook of chemistry and physics, Internet Version 2005Google Scholar
  12. 12.
    Schimpf W, MacKenzie DJ, Karson MZ, Schmidt BR, Casteras JE, Cullen JJ (2017) A guide to the use of lead for radiation shielding. Lead Industries Association, Inc. www.canadametal.com/wp-content/uploads/2016/08/radiation-shielding.pdf. Accessed 29 Nov 2017
  13. 13.
    Esaka F, Watanabe K, Fukuyama H, Onodera T, Esaka KT, Magara M, Sakurai S, Usuda S (2004) Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection X-ray fluorescence spectrometry and secondary ion mass spectrometry. J Nucl Sci Technol 41(11):1027–1032CrossRefGoogle Scholar
  14. 14.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem 88(3):293–306Google Scholar
  15. 15.
    Smentkowski VS (2000) Trends in sputtering. Prog Surf Sci 64(1–2):1–58CrossRefGoogle Scholar
  16. 16.
    Pollington AD, Kinman WS, Hanson SK, Steiner RE (2016) Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: applications to environmental sampling for nuclear safeguards. J Radioanal Nucl Chem 307(3):2109–2115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Nuclear Chemistry Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of Radiochemistry and Nuclear NonproliferationUniversity of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations