Skip to main content
Log in

Influence of biological activity on 65Zn and 109Cd removal from tidal water by chronically-polluted mangrove sediments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The biological activity influence on the mangrove sediment capacity to remove 65Zn and 109Cd from tidal water was evaluated in a site chronically polluted. Benthic Activity Indexes (BAI), corresponding to relative estimates of biological impact on radiotracer accumulation, were higher for 109Cd (~ 38%) than for 65Zn (~ 10%) in the top centimetre of sediment. However, BAI exceeded 96% for deeper sediment layers. This apparent decrease in radiotracer diffusion into deep sediments through biological activity inhibition is stronger than reported for much less polluted mangrove nearby, suggesting that benthic organisms tolerant of chronic metal pollution may affect metal sorption mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harbison P (1986) Mangrove muds: a sink and source for trace metals. Mar Pollut Bull 17:273–276

    Article  Google Scholar 

  2. Mu DH, Du JZ, Li DJ, Song HQ, Yon SP, Gu YJ (2006) Sorption/desorption of radiozinc on the surface sediments. J Radioanal Nucl Chem 267:585–589

    Article  CAS  Google Scholar 

  3. Noël V, Morin G, Juillot F, Marchand C, Brest J, Bargar JR, Muñoz M, Marakovic G, Ardo S, Brown GE Jr (2015) Ni cycling in mangrove sediments from New Caledonia. Geochim Cosmochim Acta 169:82–98

    Article  Google Scholar 

  4. Machado W, Sanders CJ, Santos IR, Sanders LM, Silva Filho EV, Luiz-Silva W (2016) Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland. Environ Pollut 213:30–35

    Article  CAS  Google Scholar 

  5. Alongi DM, Wattayakorn G, Boyle S, Tirendi F, Payn C, Dixon P (2004) Influence of roots and climate on mineral and trace element storage and flux in tropical mangrove soils. Biogeochemistry 69:105–123

    Article  CAS  Google Scholar 

  6. Machado W, Borrelli NL, Ferreira TO, Marques AGB, Osterrieth M, Guizan C (2014) Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Mar Pollut Bull 79:365–370

    Article  CAS  Google Scholar 

  7. Noronha-D’Mello CA, Nayak GN (2015) Geochemical characterization of mangrove sediments of the Zuari estuarine system, West coast of India. Estuar Coastal Shelf Sci 167:313–325

    Article  Google Scholar 

  8. Clark MW, McConchie DM, Lewis DW, Saenger P (1998) Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol 149:147–171

    Article  CAS  Google Scholar 

  9. Correia RRS, Guimarães JRD (2017) Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: the role of different microorganism consortia. Chemosphere 167:438–443

    Article  CAS  Google Scholar 

  10. Marchand C, Lallier-Vergès E, Baltzer F, Albéric P, Cossa D, Baillif P (2005) Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar Chem 98:1–17

    Article  Google Scholar 

  11. Suzuki KN, Machado EC, Machado W, Bellido AV, Bellido LF, Osso JA Jr, Lopes RT (2012) Selenium, chromium and cobalt diffusion into mangrove sediments: radiotracer experiment evidence of coupled effects of bioturbation and rhizosphere. Water Air Soil Pollut 223:3887–3892

    Article  CAS  Google Scholar 

  12. Suzuki KN, Machado EC, Machado W, Bellido LF, Bellido AV Jr, Lopes RT (2013) Radiotracer estimates of benthic activity effects on trace metal diffusion into mangrove sediments. Mar Environ Res 83:96–100

    Article  CAS  Google Scholar 

  13. Machado EC, Machado W, Bellido LF, Patchineelam SR, Bellido AV (2008) Removal of zinc from tidal water by sediments of a mangrove ecosystem: a radiotracer study. Water Air Soil Pollut 192:77–83

    Article  CAS  Google Scholar 

  14. Santschi PH (1988) Factors controlling the biogeochemical cycles of trace elements in fresh and coastal marine waters as revealed by artificial radioisotopes. Limnol Oceanogr 33:848–866

    CAS  Google Scholar 

  15. Hall POJ, Anderson LG, Rutgers van der Loeff MM, Sundby B, Westerlund SFG (1989) Oxygen uptake kinetics in the benthic boundary layer. Limnol Oceanogr 34:734–746

    Article  CAS  Google Scholar 

  16. Machado EC, Machado W, Bellido AVB, Bellido LF, Patchineelam SR (2012) Cesium, manganese and cobalt water–sediment transfer kinetics and diffusion into mangrove sediments inferred by radiotracer experiments. J Radioanal Nucl Chem 292:349–353

    Article  CAS  Google Scholar 

  17. Bradshaw C, Kumblad L, Fagrell A (2006) The use of tracers to evaluate the importance of bioturbation in remobilising contaminants in Baltic sediments. Estuar Coastal Shelf Sci 66:123–134

    Article  Google Scholar 

  18. Kerner M, Wallmann K (1992) Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe estuary during the tidal cycle. Estuar Coast Shelf Sci 35:371–393

    Article  CAS  Google Scholar 

  19. Huettel M, Ziebis W, Forster S, Luther GW (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim Cosmochim Acta 62:613–631

    Article  CAS  Google Scholar 

  20. Caetano M, Madureira M-J, Vale C (2007) Exchange of Cu and Cd across the sediment-water interface in intertidal mud flats from Ria Formosa (Portugal) August. Hydrobiologia 587:147–155

    Article  CAS  Google Scholar 

  21. Santschi PH, Nyffeler UP, O’Hara P, Buchholtz M, Broecker WS (1984) Radiotracer uptake on the sea floor: results from the MANOP chamber deployments in the eastern Pacific. Deep Sea Res 31:451–468

    Article  CAS  Google Scholar 

  22. Petersen K, Kristensen E, Bjerregaard P (1998) Influence of bioturbating animals on flux of cadmium into estuarine sediments. Mar Environ Res 45:403–415

    Article  CAS  Google Scholar 

  23. Lacerda L, Carvalho C, Tanizaki K, Ovalle A, Rezende C (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–256

    Article  Google Scholar 

  24. Molisani MM, Marins RV, Machado W, Paraquetti HHM, Bidone ED, Lacerda LD (2004) Environmental changes in Sepetiba Bay, SE Brazil. Reg Environ Change 4:17–27

    Article  Google Scholar 

  25. Araújo DF, Boaventura GR, Machado W, Viers J, Weiss D, Patchineela SR, Ruiz I, Rodrigues APC, Babinski M, Dantas E (2017) Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chem Geol 449:226–235

    Article  Google Scholar 

  26. Hatje V, Payne TE, Hill DM, McOrist G, Birch GF, Szymczok R (2003) Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int 29:619–629

    Article  CAS  Google Scholar 

  27. Ravichandran M, Baskaran M, Santschi PH, Bianchi TS (1995) Geochronology of sediments in the Sabine-Neches estuary, Texas, USA. Chem Geol 125:291–306

    Article  CAS  Google Scholar 

  28. Barros H, Laissaoui A, Abril JM (2004) Trends of radionuclide sorption by estuarine sediments. Experimental studies using 133Ba as a tracer. Sci Total Environ 319:253–267

    Article  CAS  Google Scholar 

  29. Cournane S, Vintró LL, Mitchell PI (2010) Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments. J Environ Radioact 101:985–991

    Article  CAS  Google Scholar 

  30. Osaki S, Sugihara S, Momoshima N, Maeda Y (1997) Biodiffusion of 7Be and 210Pb in intertidal estuarine sediments. J Environ Radioact 37:55–71

    Article  CAS  Google Scholar 

  31. Suzuki KN, Machado EC, Machado W, Bellido AVB, Bellido LF, Osso JA Jr, Lopes RT (2014) Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions. Radiat Phys Chem 95:336–338

    Article  CAS  Google Scholar 

  32. Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H, Kristensen E (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnol Oceanogr 47:230–240

    Article  CAS  Google Scholar 

  33. De Backer A, Van Coillie F, Montserrat F, Provoost P, Van Colen C, Vincx M, Degraer S (2011) Bioturbation effects of Corophium volutator: importance of density and behavioural activity. Estuar Coastal Shelf Sci 91:306–313

    Article  Google Scholar 

  34. Covelli S, Faganeli J, Horvat M, Brambati A (1999) Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar Coastal Shelf Sci 48:415–428

    Article  CAS  Google Scholar 

  35. Point D, Monperrus M, Tessier E, Amouroux D, Chauvaud L, Thouzeau G, Jean F, Amice E, Grall J, Leynaert A, Clavier J, Donard OFX (2007) Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuar Coastal Shelf Sci 72:457–471

    Article  Google Scholar 

  36. Yoon WB, Benner R (1992) Denitrification and oxygen consumption in sediments of two south Texas estuaries. Mar Ecol Prog Ser 90:157–167

    Article  CAS  Google Scholar 

  37. Silva CAR, Lacerda LD, Rezende CE (1990) Metals reservoir in a red mangrove forest. Biotropica 22:339–345

    Article  Google Scholar 

  38. Morse JW, Luther GW (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Article  CAS  Google Scholar 

  39. Pennafirme S, Lima I, Bitencourt JA, Crapez MAC, Lopes RT (2015) Microbial biofilm study by synchrotron X-ray microscopy. Radiat Phys Chem 116:116–119

    Article  CAS  Google Scholar 

  40. Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461

    Article  CAS  Google Scholar 

  41. Santos-Echeandía J, Vale C, Caetano M, Pereira P, Prego R (2010) Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal). Mar Environ Res 70:358–367

    Article  Google Scholar 

  42. Ospina-Alvarez N, Caetano M, Vale C, Santos-Echeandía J, Prego R (2014) Prevalence of tide-induced transport over other metal sources in a geologically enriched temperate estuarine zone (NW Iberian Peninsula). J Geochem Explor 140:46–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Rio de Janeiro State Research Foundation (FAPERJ) provided financial support. M.N. Sondermann thanks FAPERJ and K.N. Suzuki thanks the Brazilian Ministry of Education (CAPES) for their research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Sondermann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sondermann, M.N., Suzuki, K.N., Machado, E.C. et al. Influence of biological activity on 65Zn and 109Cd removal from tidal water by chronically-polluted mangrove sediments. J Radioanal Nucl Chem 316, 429–434 (2018). https://doi.org/10.1007/s10967-018-5796-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5796-2

Keywords

Navigation