Improving the visible-light photocatalytic activity of SnOx·SiO2 glass systems by introducing SnOx nanoparticles

  • Balazs Kobzi
  • Erno Kuzmann
  • Zoltan Homonnay
  • Stjepko Krehula
  • Mira Ristic
  • Shiro Kubuki
Article
  • 9 Downloads

Abstract

Tin silicate glass without SnOx nanoparticles (SiO2·SnOx), a silica glass containing only SnOx nanoparticles (SiO2·SnOxNP) and the improved product, which combines the tin silicate glass with SnOx nanoparticles (SiO2·SnOx·SnOxNP) was prepared. For the structural analysis 119Sn Mössbauer spectroscopy and X-ray diffraction were applied. The 119Sn Mössbauer spectra showed that the SiO2·SnOx·SnOxNP sample had the largest SnII content (12.0%). It also had an outstanding methylene blue degradation with the first-order rate value with (18 ± 2) × 10−3 min−1 with visible light irradiation.

Keywords

Nanostructured materials Ceramics Catalysis Sol–gel processes Mössbauer spectroscopy 

Notes

Acknowledgements

The authors would like to express their gratitude for the financial supports by Grant-in-Aid for Scientific Research (KAKENHI, No. 26630321), Priority allocation of research funds at the discretion of the President of Tokyo Metropolitan University and also by the Japan-Hungary Bilateral program (TÉT 12 JP-1-2014-0025).

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Lin J, Yu JC, Lo D, Lam SK (1999) Photocatalytic activity of rutile Ti1−xSnxO2 solid solutions. J Catal 183:368–372CrossRefGoogle Scholar
  3. 3.
    Tennakone K, Bandara J (2001) Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl Catal A 208:335–341CrossRefGoogle Scholar
  4. 4.
    Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater B112:269–278CrossRefGoogle Scholar
  5. 5.
    Umadevi M, Jegatha Christy A (2013) Synthesis, characterization and photocatalytic activity of Cuo nanoflowers. Spectrochim Acta A 109:133–137CrossRefGoogle Scholar
  6. 6.
    Jaiswal R, Patel N, Kothari DC, Miotello A (2012) Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl Catal B 126:47–54CrossRefGoogle Scholar
  7. 7.
    Jaiswal R, Bharambe J, Patel N, Dashora Alpa, Kothari DC, Miotello A (2015) Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B 168–169:333–341CrossRefGoogle Scholar
  8. 8.
    Girish Kumar S, Gomathi Devi L (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241CrossRefGoogle Scholar
  9. 9.
    Chouvin J, Olivier-Fourcade J, Jumas JC, Simon B, Godiveau O (1999) 119Sn Mössbauer study of LixSn alloys prepared electrochemically. Chem Phys Lett 308:413–420CrossRefGoogle Scholar
  10. 10.
    Conte DE, Mouyane M, Stievano L, Fraisse B, Sougrati MT, Olivier-Fourcade J, Willmann P, Jordy C, Artus M, Cassaignon S, Driezen K, Jumas JC (2012) A combined Mössbauer spectroscopy and X-ray diffraction operando study of Sn-based composite anode materials for Li-ion accumulators. J Solid State Electrochem 16:3837–3848CrossRefGoogle Scholar
  11. 11.
    Chouvin J, Branci C, Sarradin J, Olivier-Fourcade J, Jumas JC, Simon B, Biensan P (1999) Lithium intercalation in tin oxide. J Power Sources 81–82:277–281CrossRefGoogle Scholar
  12. 12.
    Solis-Casados D, Vigueras-Santiago E, Hernández-López S, Camacho-López MA (2009) Characterization and photocatalytic performance of tin oxide. Ind Eng Chem Res 4:1249–1253CrossRefGoogle Scholar
  13. 13.
    Tennakone K, Bandara J (2001) Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Appl Catal A 208:335–341CrossRefGoogle Scholar
  14. 14.
    Nayral C, Viala E, Fau P, Senocq F, Jumas JC, Maisonnat A, Chaudret B (2000) Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chem Eur J 6:4082–4090CrossRefGoogle Scholar
  15. 15.
    Zheng L, Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2009) Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg Chem 48:1819–1825CrossRefGoogle Scholar
  16. 16.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  17. 17.
    Lefebvre I, Szymanski MA (1998) Electronic structure of tin monochalcogenides from SnO to SnTe. Phys Rev B 58:1896–1906CrossRefGoogle Scholar
  18. 18.
    He Y, Li D, Chen J, Shao Y, Xian J, Zheng X, Wang P (2014) Sn3O4: a novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv 4:1266–1269CrossRefGoogle Scholar
  19. 19.
    Song H, Son SY, Kim SK, Jung GY (2015) A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity. Nano Res 8:3553–3561CrossRefGoogle Scholar
  20. 20.
    Xia W, Wang H, Zeng X, Han J, Zhu J, Zhou M, Wu S (2014) High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. Cryst Eng Commun 16:6841–6847CrossRefGoogle Scholar
  21. 21.
    Maikandan M, Tanabe T, Li P, Ueda S, Ramesh GV, Kodiyath R, Wang J, Hara T, Dakshanamoorthy A, Ishihara S, Ariga K, Ye J, Umezawa N, Abe H (2014) Photocatalytic water splitting under visible light by mixed-valence Sn3O4. Appl Mater Interfaces 6:3790–3793CrossRefGoogle Scholar
  22. 22.
    Kobzi B, Kuzmann E, Sinkó K, Homonnay Z, Ristic M, Krehula S, Nishida T, Kubuki S (2017) The relationship between SnII fraction and visible light activated photocatalytic activity of SnOx·SiO2 glass studied by Mössbauer spectroscopy. J Radioanal Nucl Chem 311:1859–1865CrossRefGoogle Scholar
  23. 23.
    Kergommeaux A, Faure-Vincent J, Pron A, Bettignies R, Malaman B, Reiss P (2012) Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn–Mössbauer spectroscopy. J Am Chem Soc 134:11659–11666CrossRefGoogle Scholar
  24. 24.
    Berry FJ, Helgason Ö (2000) Mössbauer spectroscopic properties of tin-doped iron oxides. Hyp Int 126:269–275CrossRefGoogle Scholar
  25. 25.
    Bekaert E, Montagne L, Delevoye L, Palavit G, Wattiaux A (2004) NMR and Mössbauer characterization of tin(II)–tin(IV)–sodium phosphate glasses. J Non-Cryst Solids 345–346:70–74CrossRefGoogle Scholar
  26. 26.
    Cui H, Liu Y, Ren W (2013) Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Tech 24:93–97CrossRefGoogle Scholar
  27. 27.
    Mustamam M, Karim A (1995) A study of tin oxides in silicate based glasses. University of Warwick, EnglandGoogle Scholar
  28. 28.
    Chouvin J, Olivier-Fourcade J, Jumas JC, Simon B, Biensan Ph, Fernandez Madrigal FJ, Tirado JL, Perez Vicente C (2000) SnO reduction in lithium cells: study by X-ray absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction. J Electroanal Chem 494:136–146CrossRefGoogle Scholar
  29. 29.
    Rahman G, Garcia-Suarez VM, Hong SC (2008) Vacancy-induced magnetism in SnO2: a density functional study. Phys Rev B 78:184404CrossRefGoogle Scholar
  30. 30.
    Ganeshraja AS, Clara AS, Rajkumar K, Wang Y, Wang Y, Wang J, Anbalagan K (2015) Simple hydrothermal synthesis of metal oxides coupled nanocomposites: structural, optical, magnetic and photocatalytic studies. App Surf Sci 353:553–563CrossRefGoogle Scholar
  31. 31.
    Ganeshraja AS, Nomura K, Wang J (2016) 119Sn Mössbauer studies on ferromagnetic and photocatalytic Sn–TiO2 nanocrystals. Hyp Int 237:139CrossRefGoogle Scholar
  32. 32.
    Scherrer P (1918) Nachrichten von der Gesellschaft der Wissenschaften, GöttingenGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Balazs Kobzi
    • 1
  • Erno Kuzmann
    • 2
  • Zoltan Homonnay
    • 2
  • Stjepko Krehula
    • 3
  • Mira Ristic
    • 3
  • Shiro Kubuki
    • 1
  1. 1.Department of Chemistry, Graduate School of Science and EngineeringTokyo Metropolitan UniversityTokyoJapan
  2. 2.Laboratory of Nuclear Chemistry, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  3. 3.Division of Materials ChemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations