Skip to main content
Log in

Radiation-induced degradation of aqueous 2–chlorophenol assisted by zeolites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to demonstrate that zeolite has the potential to increase the efficiency of radiolysis treatment of aqueous organic pollutants by concentrating the pollutants into the zeolite’s pores. Using 2-chlorophenol (2-ClPh) as a model compound, we determined the high performance to be displayed by a mordenite-type zeolite (HMOR), which has a high silicon-to-aluminum ratio. HMOR adsorbed far more 2-ClPh than the other zeolites used in this study. We observed a significant increase in the radiolytic degradation efficiency of 2-ClPh in the presence of HMOR. Evidence shows that the high concentration of zeolite-adsorbed 2-ClPh facilitates radiation-induced degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reiff SC, LaVerne JA (2015) Radiation-induced chemical changes to iron oxides. J Phys Chem B 119:7358–7365

    Article  CAS  Google Scholar 

  2. Lainé M, Allard T, Balan E, Martin F, Von Bardeleben HJ, Robert J-L, Le Caër S (2016) Reaction mechanisms in talc under ionizing radiation: evidence of a high stability of H· atoms. J Phys Chem C 120:2087–2095

    Article  Google Scholar 

  3. Björkbacka Å, Johnson CM, Leygraf C, Jonsson M (2016) Role of the oxide layer in radiation-induced corrosion of copper in anoxic water. J Phys Chem C 120:11450–11455

    Article  Google Scholar 

  4. Nilsson K, Roth O, Jonsson M (2017) Oxidative dissolution of ADOPT compared to standard UO2 fuel. J Nucl Mater 488:123–128

    Article  CAS  Google Scholar 

  5. LaVerne JA (2010) Radiation chemistry of water with ceramic oxides. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged particle and photon interactions with matter: recent advances, applications, and interfaces. Taylor and Francis, Boca Raton

    Google Scholar 

  6. Le Caër S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3:235–253

    Article  Google Scholar 

  7. Thomas JK (2005) Physical aspects of radiation-induced processes on SiO2, γ-Al2O3, zeolites, and clays. Chem Rev 105:1683–1734

    Article  CAS  Google Scholar 

  8. Reiff SC, LaVerne JA (2017) Radiolysis of water with aluminum oxide surfaces. Radiat Phys Chem 131:46–50

    Article  CAS  Google Scholar 

  9. Lainé M, Balan E, Allard T, Paineau E, Jeunesse P, Mostafavi M, Robert J-L, Le Caër S (2017) Reaction mechanisms in swelling clays under ionizing radiation: influence of the water amount and of the nature of the clay mineral. RSC Adv. 7:526–534

    Article  Google Scholar 

  10. Chelnokov E, Cuba V, Simeone D, Guigner J-M, Schmidhammer U, Mostafavi M, Le Caër S (2014) Electron transfer at oxide/water interfaces induced by ionizing radiation. J Phys Chem C 118:7865–7873

    Article  CAS  Google Scholar 

  11. Liu X, Zhang G, Thomas JK (1997) Spectroscopic studies of electron and hole trapping in zeolites: formation of hydrated electrons and hydroxyl radicals. J Phys Chem B 101:2182–2194

    Article  CAS  Google Scholar 

  12. Schatz T, Cook AR, Meisel D (1998) Charge carrier transfer across the silica nanoparticle/water interface. J Phys Chem B 102:7225–7230

    Article  CAS  Google Scholar 

  13. Musat RM, Cook AR, Renault J-P, Crowell RA (2012) Nanosecond pulse radiolysis of nanoconfined water. J Phys Chem C 116:13104–13110

    Article  CAS  Google Scholar 

  14. Zhang G, Liu X, Thomas JK (1998) Radiation induced physical and chemical processes in zeolite materials. Radiat Phys Chem 51:135–152

    Article  CAS  Google Scholar 

  15. Yamamoto Y, Tagawa S (2001) Radiolytic and thermal dechlorination of organic chlorides adsorbed on molecular sieve 13X. Environ Sci Technol 35:2122–2127

    Article  CAS  Google Scholar 

  16. Curry RD, Mincher BJ (1999) The status of PCB radiation chemistry research; prospects for waste treatment in nonpolar solvents and soils. Radiat Phys Chem 56:493–502

    Article  CAS  Google Scholar 

  17. Múčka V, Silber R, Pospíšil M, Čamra M, Bartoníček B (2000) Radiation degradation of polychlorinated biphenyls. Radiat Phys Chem 57:489–493

    Article  Google Scholar 

  18. Ugurlu O, Haus J, Gunawan AA, Thomas MG, Maheshwari S, Tsapatsis M, Mkhoyan KA (2011) Radiolysis to knock-on damage transition in zeolites under electron beam irradiation. Phys Rev B 83:113408

    Article  Google Scholar 

  19. Khalid M, Joly G, Renaud A, Magnoux P (2004) Removal of phenol from water by adsorption using zeolites. Ind Eng Chem Res 43:5275–5280

    Article  CAS  Google Scholar 

  20. Muñiz-Lopez C, Duconge J, Roque-Malherbe R (2009) Paranitrophenol liquid-phase adsorption in delaminated Y zeolite. J Colloid Interface Sci 329:11–16

    Article  Google Scholar 

  21. Sági G, Kovács K, Bezsenyi A, Csay T, Takács E, Wojnárovits L (2016) Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution. Radiat Phys Chem 124:1179–1183

    Article  Google Scholar 

  22. Kovács K, He S, Míle V, Földes T, Pápai I, Takács E, Wojnárovits L (2016) Ionizing radiation induced degradation of monuron in dilute aqueous solution. Radiat Phys Chem 124:191–197

    Article  Google Scholar 

  23. Chu L, Yu S, Wang J (2016) Gamma radiolytic degradation of naphthalene in aqueous solution. Radiat Phys Chem 123:97–102

    Article  CAS  Google Scholar 

  24. Zhang Z, Yang Q, Wang J (2016) Degradation of trimethoprim by gamma irradiation in the presence of persulfate. Radiat Phys Chem 127:85–91

    Article  CAS  Google Scholar 

  25. Alkhuraiji TS, Leitner NKV (2016) Effect of oxidant addition on the elimination of 2-naphthalenesulfonate in aqueous solutions by electron beam irradiation. Radiat Phys Chem 126:95–102

    Article  CAS  Google Scholar 

  26. Alkhuraiji TS, Ajlouni A-W (2017) Destruction of amphetamine in aqueous solution using gamma irradiation. Radiat Phys Chem 139:17–21

    Article  CAS  Google Scholar 

  27. Khan JA, Shah NS, Khan HM (2015) Decomposition of atrazine by ionizing radiation: kinetics, degradation pathways and influence of radical scavengers. Sep Purif Technol 156:140–147

    Article  CAS  Google Scholar 

  28. Liu N, Lei Z-D, Wang T, Wang J-J, Zhang X-D, Xu G, Tang L (2016) Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: efficiency and mechanism. Chem Eng J 295:484–493

    Article  CAS  Google Scholar 

  29. Liu N, Wang T, Zhang M, Lei J, Tang L, Hu G, Xu G, Wu M (2015) Radiation induced degradation of antiepileptic drug primidone in aqueous solution. Chem Eng J 270:66–72

    Article  CAS  Google Scholar 

  30. Wang J, Chu L (2016) Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiat Phys Chem 125:56–64

    Article  CAS  Google Scholar 

  31. Wojnárovits L, Takács E (2017) Wastewater treatment with ionizing radiation. J Radioanal Nucl Chem 311:973–981

    Article  Google Scholar 

  32. Schmid S, Krajnik P, Quint RM, Solar S (1997) Degradation of monochlorophenols by γ-irradiation. Radiat Phys Chem 50:493–502

    Article  CAS  Google Scholar 

  33. Drzewicz P, Pańta P, Gluszewski W, Trojanowicz M (1999) Effect of selected scavengers on radiolytic degradation of 2,4-dichlorophenol for environmental purposes. J Radioanal Nucl Chem 242:601–609

    Article  CAS  Google Scholar 

  34. Getoff N, Solar S (1988) Radiation induced decomposition of chlorinated phenols in water. Radiat Phys Chem 31:121–130

    CAS  Google Scholar 

  35. Getoff N (2002) Factors influencing the efficiency of radiation-induced degradation of water pollutants. Radiat Phys Chem 65:437–446

    Article  CAS  Google Scholar 

  36. Li X, Cubbage JW, Tetzlaff TA, Jenks WS (1999) Photocatalytic degradation of 4-Chlorophenol. 1. The hydroquinone pathway. J. Org. Chem. 64:8509–8524

    Article  CAS  Google Scholar 

  37. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand A Phys Chem 81:89–96

    Article  Google Scholar 

  38. Zhu L, Seff K, Olson DH, Cohen BJ, Von Dreele RB (1999) Hydronium ions in zeolites. 1. Structures of partially and fully dehydrated Na, H3O-X by X-ray and neutron diffraction. J Phys Chem B 103:10365–10372

    Article  CAS  Google Scholar 

  39. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of Rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  40. Tsolakidou A, Garrigós JB, Kilikoglou V (2002) Assessment of dissolution techniques for the analysis of ceramic samples by plasma spectrometry. Anal Chim Acta 474:177–188

    Article  CAS  Google Scholar 

  41. Sharpe PHG, Barrett JH, Berkley AM (1985) Acidic aqueous dichromate solutions as reference dosimeters in the 10-40 kGy Range. Int J Appl Radiat Isot 36:647–652

    Article  CAS  Google Scholar 

  42. Hubbell JH, Seltzer SM (1995) Tables of X-ray Mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR5632, National Institute of Standards and Technology, Gaithersburg, MD

  43. Chen NY (1976) Hydrophobic properties of zeolites. J Phys Chem 80:60–64

    Article  CAS  Google Scholar 

  44. Mozumder A (1999) Fundamentals of radiation chemistry. Academic Press, San Diego

    Google Scholar 

  45. Ellison EH (1999) Effects of coadsorbed water on the mobility of polyaromatic hydrocarbons in zeolite Y. J Phys Chem 103:9314–9320

    Article  CAS  Google Scholar 

  46. Ellison EH (2004) Influence of oxygen on the UV-photocatalyzed generation of pyrene cation radicals in the zeolites X and Y. J. Phys. Chem. B 108:4607–4618

    Article  CAS  Google Scholar 

  47. Şolpan D, Torun M (2012) The removal of chlorinated organic herbicide in water by gamma-irradiation. J Radioanal Nucl Chem 293:21–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Naotsugu Nagasawa (National Institutes of Quantum and Radiological Science and Technology) for thermogravimetric analysis. This work was supported by the JSPS KAKENHI [Grant Number 15K06674].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Kumagai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, Y., Kimura, A., Taguchi, M. et al. Radiation-induced degradation of aqueous 2–chlorophenol assisted by zeolites. J Radioanal Nucl Chem 316, 341–348 (2018). https://doi.org/10.1007/s10967-018-5762-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5762-z

Keywords

Navigation