Skip to main content
Log in

High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a brand new organic superficial active sorbent l-Cysteine hydrochloride modified bentonite (LCMB) has been developed and proposed for treatment of contaminated water containing uranium. Correlation between different factors such as pH, contact time, temperature, initial concentration of U(VI) and efficiency of LCMB for uranium absorption are discussed. At uranium content in water from 25 to 250 mg L−1, the sorption capacity for LCMB reached 208.3 mg g−1 that is essentially higher in comparison with other sorbents and notably improved from 77 mg g−1 after modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  Google Scholar 

  2. Vandenhove H, Van HM, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145:587–595

    Article  CAS  Google Scholar 

  3. USEPA (1996) Integrated risk information system (IRIS), electronic database. USEPA, Washington, DC

    Google Scholar 

  4. Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137:2788–2791

    Article  CAS  Google Scholar 

  5. Wang F, Liu Q, Li R, Li Z, Zhang H, Liu L et al (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids Surf A 490:215–221

    Article  CAS  Google Scholar 

  6. Mellah A, Chegrouche S, Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  7. Agrawal YK, Shrivastav P, Menon SK (2000) Solvent extraction, separation of uranium (VI) with crown ether. Sep Purif Technol 20:177–183

    Article  CAS  Google Scholar 

  8. Favre-Réguillon A, Lebuzit G, Murat D, Foos J, Mansour C, Draye M (2008) Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res 42:1160–1166

    Article  Google Scholar 

  9. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  10. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198–199:246–253

    Article  Google Scholar 

  11. Wen L, Xiao Z, Wang T, Zhao D, Ni J (2016) Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem Eng J 286:427–435

    Article  Google Scholar 

  12. Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:177–184

    Article  CAS  Google Scholar 

  13. Echeverría JC, Churio E, Garrido JJ (2002) Retention mechanisms of Cd on illite. Clays Clay Miner 50:614–623

    Article  Google Scholar 

  14. Brigatti MF, Lugli C, Poppi L (2000) Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci 16:45–57

    Article  CAS  Google Scholar 

  15. Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286:43–52

    Article  CAS  Google Scholar 

  16. Liu X, Prikryl R, Pusch R (2011) THMC-testing of three expandable clays of potential use in HLW repositories. Appl Clay Sci 52:419–427

    Article  CAS  Google Scholar 

  17. Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  18. Prasad PV, Rao TKV, Rao KR, Kamal CS, Samuel T (2015) Studies on influence of Cd2+ ions in unidirectional growth and characterization of l-Cysteine hydrochloride monohydrate single crystals. Spectrochim Acta Part A 136:1950–1954

    Article  CAS  Google Scholar 

  19. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  20. Yan LG, Qin LL, Yu HQ, Li S, Shan RR, Du B (2015) Adsorption of acid dyes from aqueous solution by CTMAB modified bentonite: kinetic and isotherm modeling. J Mol Liq 211:1074–1081

    Article  CAS  Google Scholar 

  21. Lee SY, Kim SJ (2002) Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Appl Clay Sci 22:55–63

    Article  CAS  Google Scholar 

  22. Norrish K, Quirk JP (1954) Crystalline swelling of montmorillonite: use of electrolytes to control swelling. Nature 173:255–256

    Article  CAS  Google Scholar 

  23. Jalbani N, Soylak M (2014) Spectrophotometric determination of uranium using chromotrope 2R complexes. J Radioanal Nucl Chem 301:263–268

    Article  CAS  Google Scholar 

  24. Soylak M, Khan M, Alosmanov R, Shah J, Jan MR (2015) Solid phase extraction of uranium(VI) on phosphorus-containing polymer grafted 4-aminoantipyrine. J Radioanal Nucl Chem 308:955–963

    Article  Google Scholar 

  25. Soylak M, Khan M, Yilmaz E (2016) Switchable solvent based liquid phase microextraction of uranium in environmental samples: a green approach. Anal Methods 8:979–986

    Article  CAS  Google Scholar 

  26. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  27. Duo-qiang Fan, Qiao-hui Li, Ping Liu et al (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905

    Article  Google Scholar 

  28. Clifford D, Zhang Z (1994) Modifying ion exchange for combined removal of uranium and radium. Journal 86:214–227

    Google Scholar 

  29. Spear JR, Figueroa LA, Honeyman BD (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ Sci Technol 33:2667–2675

    Article  CAS  Google Scholar 

  30. Bai J, Li Z, Fan F, Wu X, Tian W, Yin X et al (2014) Biosorption of uranium by immobilized cells of Rhodotorula glutinis. J Radioanal Nucl Chem 299:1517–1524

    Article  CAS  Google Scholar 

  31. Ghasemi M, Keshtkar AR, Dabbagh R, Jaber SS (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149

    Article  CAS  Google Scholar 

  32. Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291:877–883

    Article  CAS  Google Scholar 

  33. Singhal RK, Basu H, Pimple MV, Manisha V, Basan MKT, Reddy AVR (2013) Spectroscopic determination of U(VI) species sorbed by the Chlorella (Chlorella pyrenoidosa) fresh water algae. J Radioanal Nucl Chem 298:587–592

    Article  CAS  Google Scholar 

  34. Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106:8–19

    Article  CAS  Google Scholar 

  35. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  36. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z et al (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  37. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011

    Article  CAS  Google Scholar 

  38. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X et al (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  39. Basu H, Singhal RK, Pimple MV, Reddy AVR (2014) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. Int J Environ Sci Technol 12:1899–1906

    Article  Google Scholar 

  40. Li X, Ding C, Liao J, Du L, Sun Q, Yang J et al (2016) Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J Environ Sci (China) 41:162–171

    Article  Google Scholar 

  41. Basu H, Singhal RK, Pimple MV, Manisha V, Bassan MKT, Reddy AVR et al (2011) Development of naturally occurring siliceous material for the preferential removal of thorium from U-Th from aquatic environment. J Radioanal Nucl Chem 289:231–237

    Article  CAS  Google Scholar 

  42. Chen B, Wang J, Kong L, Mai X, Zheng N, Zhong Q et al (2017) Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf A 520:612–621

    Article  CAS  Google Scholar 

  43. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447–454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Key Laboratory for Radioactive Geology and Exploration Technology, Fundamental Science for National Defense, the International Scientific and Technological Cooperation Projects (2015DFR61020), Science and technology project of Jiangxi Provincial Department of Education (GJJ14468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Chen, Q.S., Huang, B. et al. High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 316, 71–80 (2018). https://doi.org/10.1007/s10967-018-5744-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5744-1

Keywords

Navigation