Study on the sorption process on geological materials of long-lived radioactive isotopes 90Sr and 137Cs in model systems with the use of short-lived isotopes of 85Sr, 134Cs

  • Magdalena Miecznik
  • Jerzy Wojciech Mietelski
  • Edyta Łokas
  • Andrzej Budziak


The objective of this work was to determine the sorption properties of soil underneath the National Radioactive Waste Disposal facility (NRWD) in Różan (NE Poland) for strontium (Sr) and caesium (Cs). The soil underneath the disposal was mainly sands consisted with quartz. The NRWD is a Low and Intermediate Level Wastes type facility. The procedure was new for our laboratory and turned out to be simple and effective. Sorption process analyses were carried out according to pH, ionic strength, time changes and tracer concentration in the solution. We also determined the Langmuir adsorption isotherms.


Cs and Sr adsorption Determining Langmuir isotherm Quartz and sands Low and Intermediate Level Wastes (LILW) 



This paper is a result of PhD dissertation survey implemented within the Human Capital Operational Program POKL.04.01.01-00-434/08-02, co-financed by the European Union.


  1. 1.
    Tomczak W (2007) In: IAEA, Low and Intermediate Level waste repositories: socioeconomic aspects and public involvement, Vienna, pp 83–93Google Scholar
  2. 2.
    Tomczak W (1998) Krajowe składowisko odpadów promieniotwórczych w Różanie. Postępy Techniki Jądrowej 41:25–36Google Scholar
  3. 3.
    Fridriksson T, Arnorsson S, Bird DK (2009) Prosesses controlling Sr in surface and ground waters of Tertiary tholeiitic flood basalts in Northern Iceland. Geochim Cosmochim Acta 31:6727–6746CrossRefGoogle Scholar
  4. 4.
    Vajda N, Kim Ch-K (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 86:2306–2326CrossRefGoogle Scholar
  5. 5.
    Lu N, Mason CFV (2001) Sorption-desorption behavior of strontium-85 onto montmorillonite and silica colloids. Appl Geochem 16:1653–1662CrossRefGoogle Scholar
  6. 6.
    Thorpe CL, Lloyd JR, Law GTW, Burke IT, Shaw S (2012) Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments. Chem Geol 306:114–122CrossRefGoogle Scholar
  7. 7.
    Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifier sediments: implication for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491CrossRefGoogle Scholar
  8. 8.
    Vejsada J, Jelinek E, Randa Z, Hradil D, Prikryl R (2005) Sorption of cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand. Appl Radiat Isot 62:91–96CrossRefGoogle Scholar
  9. 9.
    Konya J, Nagy NM, Nemes Z (2005) The effect of mineral composition on the sorption of cesium ions on geological formations. J Colloid Interface Sci 8:350–356CrossRefGoogle Scholar
  10. 10.
    Forsberg S, Rosen K, Fernandez V, Juhan H (1999) Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions. J Environ Radioact 50:235–252CrossRefGoogle Scholar
  11. 11.
    Brady PV, Kozak MW (1995) Geochemical engineering of low level radioactive waste in cementitious environments. Waste Manage 15:293–301CrossRefGoogle Scholar
  12. 12.
    Matsunaga T, Ueno T, Amano H, Tkatchenko Y, Kovalyov A, Watanabe M, Onuma Y (1998) Characteristics of chernobyl-derived radionuklides in particulate form in surface waters in the exclusion zone around the chernobyl nuclear power plant. J Contam Hydrol 35:101–113CrossRefGoogle Scholar
  13. 13.
    Misiak R, Gaca P, Bartyzel M, Mietelski JW (2003) High pure, carrier free 83Sr and 83Rb tracers obtained with AIC-144 cyclotron. Nukleonika 48:151–153Google Scholar
  14. 14.
    Przedsiębiorstwo Geologiczne “POLGEOL” S.A. (2002) Objaśnienia do mapy hydrogeologicznej Polski w skali 1:50000. Arkusz Różan (372). Państwowy Instytut Geologiczny, WarszawaGoogle Scholar
  15. 15.
    Giannakopoulou F, Haidouti C, Chronopoulou A, Gasparatos D (2007) Sorption behavior of cesium on various soils under different pH levels. J Hazard Mater 149:553–556CrossRefGoogle Scholar
  16. 16.
    Flury M, Sz Czigany, Chen G, Harsh JB (2004) Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength. J Contam Hydrol 71:111–126CrossRefGoogle Scholar
  17. 17.
    Kleszcz K, Mietelski JW, Łokas E (2015) Potassium influence on the sorption of 134Cs and 83Rb by AMP in fresh and salty waters. J Radioanal Nucl Chem 305(2):439–443CrossRefGoogle Scholar
  18. 18.
    Söderlund M, Hakanen M, Lehto J (2015) Sorption of cesium on boreal forest soil I: the effect of grain size, organic matter and mineralogy. J Radioanal Nucl Chem 309:637–645Google Scholar
  19. 19.
    Lehto J (2015) Sorption processes of radiocesium in soil and bedrock. Radiochim Acta 103:213–218CrossRefGoogle Scholar
  20. 20.
    Csoban K, Parkanyi-Berka M, Joo P, Behra Ph (1997) Sorption experiments of Cr(III) onto silica. Colloids Surf 141:347–364CrossRefGoogle Scholar
  21. 21.
    Ahn J, Apted MJ (2010) Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. Woodhead Publishing Limited, OxfordCrossRefGoogle Scholar
  22. 22.
    Jurkowski M, Białkowski T (2013) Odpady promieniotwórcze. Bezpieczeństwo jądrowe i ochrona radiologiczna. Biuletyn informacyjny PAA, Warszawa, pp 27–29Google Scholar
  23. 23.
    Państwowa Służba Hydrogeologiczna.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Nuclear Physics Polish Academy of ScienceKrakowPoland

Personalised recommendations